Sung-Min Kim, Jong-Yeon Kim, Eun-Min Jun, Varun Jaiswal, Eun-Jung Park, Hae-Jeung Lee
{"title":"粉虫水解物通过sirtuin 1介导的信号通路和Akt通路改善地塞米松诱导的肌肉萎缩。","authors":"Sung-Min Kim, Jong-Yeon Kim, Eun-Min Jun, Varun Jaiswal, Eun-Jung Park, Hae-Jeung Lee","doi":"10.1038/s41538-025-00432-9","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of skeletal muscle mass and strength can result from various factors, including malnutrition, glucocorticoid usage, and diseases. The mealworm (Tenebrio molitor larvae) is an edible insect gaining popularity as an alternative protein-rich diet. Mealworms are expected to help alleviate muscle atrophy based on their rich, high-quality protein and peptide content, but it remains unclear whether mealworms ameliorate muscle loss. This study aimed to investigate the potential of mealworm hydrolysate (MH) in mitigating dexamethasone (DEX)-induced muscle atrophy and to elucidate the underlying mechanisms. MH ameliorates muscle atrophy by activating sirtuin 1 (SIRT1) and Akt, reducing muscle-specific RING finger protein-1 and atrogin-1 expression, and inhibiting apoptosis in DEX-treated C2C12 cells. Additionally, MH significantly increased the muscle mass, grip strength, and muscle fiber cross-sectional area by activating SIRT1 and Akt in DEX-treated rats. These findings suggest that MH has the potential in alleviating dexamethasone-induced muscle atrophy.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"72"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075696/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mealworm hydrolysate ameliorates dexamethasone-induced muscle atrophy via sirtuin 1-mediated signaling and Akt pathway.\",\"authors\":\"Sung-Min Kim, Jong-Yeon Kim, Eun-Min Jun, Varun Jaiswal, Eun-Jung Park, Hae-Jeung Lee\",\"doi\":\"10.1038/s41538-025-00432-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss of skeletal muscle mass and strength can result from various factors, including malnutrition, glucocorticoid usage, and diseases. The mealworm (Tenebrio molitor larvae) is an edible insect gaining popularity as an alternative protein-rich diet. Mealworms are expected to help alleviate muscle atrophy based on their rich, high-quality protein and peptide content, but it remains unclear whether mealworms ameliorate muscle loss. This study aimed to investigate the potential of mealworm hydrolysate (MH) in mitigating dexamethasone (DEX)-induced muscle atrophy and to elucidate the underlying mechanisms. MH ameliorates muscle atrophy by activating sirtuin 1 (SIRT1) and Akt, reducing muscle-specific RING finger protein-1 and atrogin-1 expression, and inhibiting apoptosis in DEX-treated C2C12 cells. Additionally, MH significantly increased the muscle mass, grip strength, and muscle fiber cross-sectional area by activating SIRT1 and Akt in DEX-treated rats. These findings suggest that MH has the potential in alleviating dexamethasone-induced muscle atrophy.</p>\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\"9 1\",\"pages\":\"72\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075696/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1038/s41538-025-00432-9\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00432-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Mealworm hydrolysate ameliorates dexamethasone-induced muscle atrophy via sirtuin 1-mediated signaling and Akt pathway.
Loss of skeletal muscle mass and strength can result from various factors, including malnutrition, glucocorticoid usage, and diseases. The mealworm (Tenebrio molitor larvae) is an edible insect gaining popularity as an alternative protein-rich diet. Mealworms are expected to help alleviate muscle atrophy based on their rich, high-quality protein and peptide content, but it remains unclear whether mealworms ameliorate muscle loss. This study aimed to investigate the potential of mealworm hydrolysate (MH) in mitigating dexamethasone (DEX)-induced muscle atrophy and to elucidate the underlying mechanisms. MH ameliorates muscle atrophy by activating sirtuin 1 (SIRT1) and Akt, reducing muscle-specific RING finger protein-1 and atrogin-1 expression, and inhibiting apoptosis in DEX-treated C2C12 cells. Additionally, MH significantly increased the muscle mass, grip strength, and muscle fiber cross-sectional area by activating SIRT1 and Akt in DEX-treated rats. These findings suggest that MH has the potential in alleviating dexamethasone-induced muscle atrophy.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.