一种用于超稳定激光系统的超低噪声高增益伺服控制器。

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Wen-Chao Ji, Xian-Qing Zhu, Yi Hu, De-Quan Kong, Zhi-Peng Jia, Xiang-Pei Liu, Xing-Yang Cui, Ping Xu, Han-Ning Dai, Sheng-Kai Liao, Yu-Ao Chen, Xiao Jiang
{"title":"一种用于超稳定激光系统的超低噪声高增益伺服控制器。","authors":"Wen-Chao Ji, Xian-Qing Zhu, Yi Hu, De-Quan Kong, Zhi-Peng Jia, Xiang-Pei Liu, Xing-Yang Cui, Ping Xu, Han-Ning Dai, Sheng-Kai Liao, Yu-Ao Chen, Xiao Jiang","doi":"10.1063/5.0261054","DOIUrl":null,"url":null,"abstract":"<p><p>State-of-the-art ultra-stable laser systems exhibit fractional frequency stability on the order of 10-17. The imminent challenge lies in advancing this stability to the 10-18 range, thereby approaching the fundamental limit imposed by thermal noise. To achieve such a milestone, it is necessary that all technical noise sources, particularly electrical noise, be suppressed well below the level of thermal noise. As an initial stride toward 10-18 stability, we have improved an ultra-stable laser system through the redesign of its frequency stabilization feedback electronics, introducing an innovative servo controller architecture. This innovative servo controller incorporates a pre-amp stage comprising 16 parallel operational amplifiers, which feeds into a high-gain stage constituted by four cascaded integrators. This design yields an impressive input noise floor of 1.4 nV/Hz at 1 Hz and delivers a substantial servo gain of 230 dB at 1 Hz. Consequently, the upgraded ultra-stable laser system exhibits a residual in-loop error noise that contributes a mere fractional frequency stability of 4.7 × 10-20, signifying an improvement of two orders of magnitude. This significant advancement not only paves the way for addressing other technical noise challenges but also holds immense appeal for applications demanding utmost precision, including ultra-stable laser systems, gravitational wave detectors, and optical clocks.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultra-low noise and high-gain servo controller for ultra-stable laser systems.\",\"authors\":\"Wen-Chao Ji, Xian-Qing Zhu, Yi Hu, De-Quan Kong, Zhi-Peng Jia, Xiang-Pei Liu, Xing-Yang Cui, Ping Xu, Han-Ning Dai, Sheng-Kai Liao, Yu-Ao Chen, Xiao Jiang\",\"doi\":\"10.1063/5.0261054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>State-of-the-art ultra-stable laser systems exhibit fractional frequency stability on the order of 10-17. The imminent challenge lies in advancing this stability to the 10-18 range, thereby approaching the fundamental limit imposed by thermal noise. To achieve such a milestone, it is necessary that all technical noise sources, particularly electrical noise, be suppressed well below the level of thermal noise. As an initial stride toward 10-18 stability, we have improved an ultra-stable laser system through the redesign of its frequency stabilization feedback electronics, introducing an innovative servo controller architecture. This innovative servo controller incorporates a pre-amp stage comprising 16 parallel operational amplifiers, which feeds into a high-gain stage constituted by four cascaded integrators. This design yields an impressive input noise floor of 1.4 nV/Hz at 1 Hz and delivers a substantial servo gain of 230 dB at 1 Hz. Consequently, the upgraded ultra-stable laser system exhibits a residual in-loop error noise that contributes a mere fractional frequency stability of 4.7 × 10-20, signifying an improvement of two orders of magnitude. This significant advancement not only paves the way for addressing other technical noise challenges but also holds immense appeal for applications demanding utmost precision, including ultra-stable laser systems, gravitational wave detectors, and optical clocks.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"96 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0261054\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0261054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

最先进的超稳定激光系统表现出10-17量级的分数频率稳定性。迫在眉睫的挑战在于将这种稳定性提高到10-18范围,从而接近热噪声所施加的基本极限。为了达到这样一个里程碑,有必要将所有技术噪声源,特别是电气噪声,抑制到远低于热噪声的水平。作为迈向10-18稳定性的最初一步,我们通过重新设计其频率稳定反馈电子设备改进了超稳定激光系统,引入了创新的伺服控制器架构。这款创新的伺服控制器集成了一个由16个并联运算放大器组成的前置放大器级,并将其馈入由四个级联积分器组成的高增益级。该设计在1hz时产生令人印象深刻的1.4 nV/Hz输入本底噪声,并在1hz时提供230 dB的可观伺服增益。因此,升级后的超稳定激光系统显示出残留的环内误差噪声,其贡献的频率稳定性仅为4.7 × 10-20,这意味着两个数量级的改进。这一重大进步不仅为解决其他技术噪声挑战铺平了道路,而且对要求极高精度的应用具有巨大的吸引力,包括超稳定激光系统、引力波探测器和光学时钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ultra-low noise and high-gain servo controller for ultra-stable laser systems.

State-of-the-art ultra-stable laser systems exhibit fractional frequency stability on the order of 10-17. The imminent challenge lies in advancing this stability to the 10-18 range, thereby approaching the fundamental limit imposed by thermal noise. To achieve such a milestone, it is necessary that all technical noise sources, particularly electrical noise, be suppressed well below the level of thermal noise. As an initial stride toward 10-18 stability, we have improved an ultra-stable laser system through the redesign of its frequency stabilization feedback electronics, introducing an innovative servo controller architecture. This innovative servo controller incorporates a pre-amp stage comprising 16 parallel operational amplifiers, which feeds into a high-gain stage constituted by four cascaded integrators. This design yields an impressive input noise floor of 1.4 nV/Hz at 1 Hz and delivers a substantial servo gain of 230 dB at 1 Hz. Consequently, the upgraded ultra-stable laser system exhibits a residual in-loop error noise that contributes a mere fractional frequency stability of 4.7 × 10-20, signifying an improvement of two orders of magnitude. This significant advancement not only paves the way for addressing other technical noise challenges but also holds immense appeal for applications demanding utmost precision, including ultra-stable laser systems, gravitational wave detectors, and optical clocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信