Hyun-Jun Kim, Hye-Jin Kim, Heesang Hong, Minwoo Choi, Azfar Ismail, Daye Mun, Younghoon Kim, Gap-Don Kim, Cheorun Jo
{"title":"利用滴漏代谢物和预测模型对猪里脊肉进行无损新鲜度评价。","authors":"Hyun-Jun Kim, Hye-Jin Kim, Heesang Hong, Minwoo Choi, Azfar Ismail, Daye Mun, Younghoon Kim, Gap-Don Kim, Cheorun Jo","doi":"10.1038/s41538-025-00421-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study validated the use of pork drip metabolites for non-destructive freshness prediction. The pork loin was vacuum-packaged and stored for 27 days at 4 °C. The pH, drip loss, total aerobic bacterial counts (TAB), microbial composition and drip metabolites were examined. LASSO and Random Forest (RF) were selected and used for variable selection, while Ridge regression and Support Vector Regression were utilized to develop predictive models. Validation was performed using leave-one-out cross-validation. LASSO and RF selected 13 and 10 metabolites, respectively. The metabolites selected by each method were trained using Ridge regression and SVR. Each of the four trained models achieved R<sup>2</sup> values of over 0.9. In the validation step, the model trained by Ridge regression using drip metabolites selected through LASSO showed the lowest RMSE value of 0.283 log CFU/g. Therefore, selected drip metabolites can be used to predict TAB and microbial composition of pork loin through mathematical modeling.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"55"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing drip metabolites and predictive modeling for non-destructive freshness assessment in pork loin.\",\"authors\":\"Hyun-Jun Kim, Hye-Jin Kim, Heesang Hong, Minwoo Choi, Azfar Ismail, Daye Mun, Younghoon Kim, Gap-Don Kim, Cheorun Jo\",\"doi\":\"10.1038/s41538-025-00421-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study validated the use of pork drip metabolites for non-destructive freshness prediction. The pork loin was vacuum-packaged and stored for 27 days at 4 °C. The pH, drip loss, total aerobic bacterial counts (TAB), microbial composition and drip metabolites were examined. LASSO and Random Forest (RF) were selected and used for variable selection, while Ridge regression and Support Vector Regression were utilized to develop predictive models. Validation was performed using leave-one-out cross-validation. LASSO and RF selected 13 and 10 metabolites, respectively. The metabolites selected by each method were trained using Ridge regression and SVR. Each of the four trained models achieved R<sup>2</sup> values of over 0.9. In the validation step, the model trained by Ridge regression using drip metabolites selected through LASSO showed the lowest RMSE value of 0.283 log CFU/g. Therefore, selected drip metabolites can be used to predict TAB and microbial composition of pork loin through mathematical modeling.</p>\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\"9 1\",\"pages\":\"55\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1038/s41538-025-00421-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00421-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Utilizing drip metabolites and predictive modeling for non-destructive freshness assessment in pork loin.
This study validated the use of pork drip metabolites for non-destructive freshness prediction. The pork loin was vacuum-packaged and stored for 27 days at 4 °C. The pH, drip loss, total aerobic bacterial counts (TAB), microbial composition and drip metabolites were examined. LASSO and Random Forest (RF) were selected and used for variable selection, while Ridge regression and Support Vector Regression were utilized to develop predictive models. Validation was performed using leave-one-out cross-validation. LASSO and RF selected 13 and 10 metabolites, respectively. The metabolites selected by each method were trained using Ridge regression and SVR. Each of the four trained models achieved R2 values of over 0.9. In the validation step, the model trained by Ridge regression using drip metabolites selected through LASSO showed the lowest RMSE value of 0.283 log CFU/g. Therefore, selected drip metabolites can be used to predict TAB and microbial composition of pork loin through mathematical modeling.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.