多任务知觉学习中的顺行干扰。

IF 3.6 1区 心理学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Jia Yang, Fang-Fang Yan, Tingting Wang, Zile Wang, Qingshang Ma, Jinmei Xiao, Xianyuan Yang, Zhong-Lin Lu, Chang-Bing Huang
{"title":"多任务知觉学习中的顺行干扰。","authors":"Jia Yang, Fang-Fang Yan, Tingting Wang, Zile Wang, Qingshang Ma, Jinmei Xiao, Xianyuan Yang, Zhong-Lin Lu, Chang-Bing Huang","doi":"10.1038/s41539-025-00312-7","DOIUrl":null,"url":null,"abstract":"<p><p>Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"10 1","pages":"23"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anterograde interference in multitask perceptual learning.\",\"authors\":\"Jia Yang, Fang-Fang Yan, Tingting Wang, Zile Wang, Qingshang Ma, Jinmei Xiao, Xianyuan Yang, Zhong-Lin Lu, Chang-Bing Huang\",\"doi\":\"10.1038/s41539-025-00312-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.</p>\",\"PeriodicalId\":48503,\"journal\":{\"name\":\"npj Science of Learning\",\"volume\":\"10 1\",\"pages\":\"23\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Science of Learning\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41539-025-00312-7\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-025-00312-7","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

学习稳健地执行多项任务是人类智能的一个重要方面,但其机制仍然难以捉摸。在此,我们提出了关于任务交互的四个假设,并通过持续学习框架分析了训练序列效应。49名受试者按顺序学习了7项任务,每一组都遵循不同的顺序。结果显示,与较早学习任务的受试者相比,较晚学习任务的受试者在六个任务(对比、游标、面部、运动、听觉和N-back任务,形状任务除外)中的表现较差。有趣的是,序列位置对遗忘的影响最小。一项补充性的双任务实验证实了这些发现。通过详细分析会话和块学习曲线,我们发现了特定任务的顺行干扰,但没有逆行干扰。这些发现支持了综合再加权理论,并揭示了控制人脑如何平衡可塑性和稳定性的元可塑性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anterograde interference in multitask perceptual learning.

Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
7.10%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信