{"title":"多任务知觉学习中的顺行干扰。","authors":"Jia Yang, Fang-Fang Yan, Tingting Wang, Zile Wang, Qingshang Ma, Jinmei Xiao, Xianyuan Yang, Zhong-Lin Lu, Chang-Bing Huang","doi":"10.1038/s41539-025-00312-7","DOIUrl":null,"url":null,"abstract":"<p><p>Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"10 1","pages":"23"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anterograde interference in multitask perceptual learning.\",\"authors\":\"Jia Yang, Fang-Fang Yan, Tingting Wang, Zile Wang, Qingshang Ma, Jinmei Xiao, Xianyuan Yang, Zhong-Lin Lu, Chang-Bing Huang\",\"doi\":\"10.1038/s41539-025-00312-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.</p>\",\"PeriodicalId\":48503,\"journal\":{\"name\":\"npj Science of Learning\",\"volume\":\"10 1\",\"pages\":\"23\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Science of Learning\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41539-025-00312-7\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-025-00312-7","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Anterograde interference in multitask perceptual learning.
Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.