Xia Liu, Yi Yuan, Xiao-Li Chen, Zhu Fang, Si-Yun Liu, Hong Pu, Hang Li
{"title":"双能ct衍生碘图放射组学预测可切除直肠癌患者淋巴结转移。","authors":"Xia Liu, Yi Yuan, Xiao-Li Chen, Zhu Fang, Si-Yun Liu, Hong Pu, Hang Li","doi":"10.1177/08953996241313322","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundLymph node metastasis (LNM) is a poor prognostic predictor and is highly correlated with local recurrence in rectal cancer patients.ObjectiveTo investigate the value of radiomics from dual-energy CT-derived iodine maps for the preoperative prediction of LNM in rectal cancer patients.MethodsA total of 176 patients were enrolled in this study (training group, n = 123; validation group, n = 53). A radiomic signature was constructed via support vector machine (SVM) modeling. Seven models, including a clinical feature model (Model 1), an arterial model (Model 2), a venous model (Model 3), an arterial-venous model (Model 4), an arterial-clinical model (Model 5), a venous-clinical model (Model 6) and an arterial-venous-clinical model (Model 7), were established via logistic regression modeling. Diagnostic performance was assessed via receiver operating characteristic (ROC) curves.ResultsTumor location and carcinoembryonic antigen levels were used to construct Model 1 (training group, AUC [area under the ROC curve] = 0.721, 95% CI [confidence intervals], 0.630-0.813; validation group, AUC = 0.729, 95% CI, 0.593-0.865). Model 6 and Model 7 further improved the discriminatory performance in the training (AUC = 0.850 and 0.869, 95% CI, 0.782-0.919 and 0.807-0.932, respectively; <i>p </i>= 0.250) and validation groups (AUC = 0.780 and 0.716, 95% CI, 0.653-0.906 and 0.576-0.856, respectively; <i>p </i>= 0.115). Moreover, decision curve analysis revealed a greater net benefit with Model 6.ConclusionsThe combination of radiomic features based on dual-energy CT-derived iodine maps and clinical features provides better diagnostic performance for predicting LNM in rectal cancer patients.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"33 3","pages":"553-564"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics from dual-energy CT-derived iodine maps for predicting lymph node metastases in patients with resectable rectal cancer.\",\"authors\":\"Xia Liu, Yi Yuan, Xiao-Li Chen, Zhu Fang, Si-Yun Liu, Hong Pu, Hang Li\",\"doi\":\"10.1177/08953996241313322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundLymph node metastasis (LNM) is a poor prognostic predictor and is highly correlated with local recurrence in rectal cancer patients.ObjectiveTo investigate the value of radiomics from dual-energy CT-derived iodine maps for the preoperative prediction of LNM in rectal cancer patients.MethodsA total of 176 patients were enrolled in this study (training group, n = 123; validation group, n = 53). A radiomic signature was constructed via support vector machine (SVM) modeling. Seven models, including a clinical feature model (Model 1), an arterial model (Model 2), a venous model (Model 3), an arterial-venous model (Model 4), an arterial-clinical model (Model 5), a venous-clinical model (Model 6) and an arterial-venous-clinical model (Model 7), were established via logistic regression modeling. Diagnostic performance was assessed via receiver operating characteristic (ROC) curves.ResultsTumor location and carcinoembryonic antigen levels were used to construct Model 1 (training group, AUC [area under the ROC curve] = 0.721, 95% CI [confidence intervals], 0.630-0.813; validation group, AUC = 0.729, 95% CI, 0.593-0.865). Model 6 and Model 7 further improved the discriminatory performance in the training (AUC = 0.850 and 0.869, 95% CI, 0.782-0.919 and 0.807-0.932, respectively; <i>p </i>= 0.250) and validation groups (AUC = 0.780 and 0.716, 95% CI, 0.653-0.906 and 0.576-0.856, respectively; <i>p </i>= 0.115). Moreover, decision curve analysis revealed a greater net benefit with Model 6.ConclusionsThe combination of radiomic features based on dual-energy CT-derived iodine maps and clinical features provides better diagnostic performance for predicting LNM in rectal cancer patients.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\"33 3\",\"pages\":\"553-564\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241313322\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241313322","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Radiomics from dual-energy CT-derived iodine maps for predicting lymph node metastases in patients with resectable rectal cancer.
BackgroundLymph node metastasis (LNM) is a poor prognostic predictor and is highly correlated with local recurrence in rectal cancer patients.ObjectiveTo investigate the value of radiomics from dual-energy CT-derived iodine maps for the preoperative prediction of LNM in rectal cancer patients.MethodsA total of 176 patients were enrolled in this study (training group, n = 123; validation group, n = 53). A radiomic signature was constructed via support vector machine (SVM) modeling. Seven models, including a clinical feature model (Model 1), an arterial model (Model 2), a venous model (Model 3), an arterial-venous model (Model 4), an arterial-clinical model (Model 5), a venous-clinical model (Model 6) and an arterial-venous-clinical model (Model 7), were established via logistic regression modeling. Diagnostic performance was assessed via receiver operating characteristic (ROC) curves.ResultsTumor location and carcinoembryonic antigen levels were used to construct Model 1 (training group, AUC [area under the ROC curve] = 0.721, 95% CI [confidence intervals], 0.630-0.813; validation group, AUC = 0.729, 95% CI, 0.593-0.865). Model 6 and Model 7 further improved the discriminatory performance in the training (AUC = 0.850 and 0.869, 95% CI, 0.782-0.919 and 0.807-0.932, respectively; p = 0.250) and validation groups (AUC = 0.780 and 0.716, 95% CI, 0.653-0.906 and 0.576-0.856, respectively; p = 0.115). Moreover, decision curve analysis revealed a greater net benefit with Model 6.ConclusionsThe combination of radiomic features based on dual-energy CT-derived iodine maps and clinical features provides better diagnostic performance for predicting LNM in rectal cancer patients.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes