Matthieu Duot, Sarah Y Coomson, Sanjaya K Shrestha, M V Murali Krishna Nagulla, Yann Audic, Ruteja A Barve, Hongzhan Huang, Carole Gautier-Courteille, Luc Paillard, Salil A Lachke
{"title":"转录组荟萃分析揭示了胚胎、幼年、成年和老年小鼠晶状体上皮和纤维中细胞特异性调控关系。","authors":"Matthieu Duot, Sarah Y Coomson, Sanjaya K Shrestha, M V Murali Krishna Nagulla, Yann Audic, Ruteja A Barve, Hongzhan Huang, Carole Gautier-Courteille, Luc Paillard, Salil A Lachke","doi":"10.1167/iovs.66.4.42","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The lens transcriptome has been examined using microarrays and RNA-sequencing (RNA-seq). These omics data are the basis of the bioinformatics web-resource iSyTE that has identified new genes involved in lens development and cataract. The lens predominantly contains epithelial and fiber cells, and yet, presently, iSyTE is based on whole lens data. To gain cell-specific regulatory insights, we meta-analyzed isolated epithelium and fiber transcriptomes from embryonic/postnatal, adult and aged lenses.</p><p><strong>Methods: </strong>Mouse lens epithelium and fiber transcriptome public datasets at embryonic (E) and postnatal (P) stages E12.5, E14.5, E16.5, E18.5, P0.5, P0, P5, P13, and age one month, three months, six months, and two years were analyzed. Microarray or RNA-seq data were analyzed by appropriate methods and compared to other resources (e.g., Cat-Map, CompBio).</p><p><strong>Results: </strong>Across all RNA-seq datasets examined, 2466 genes are differentially expressed between epithelium and fibers, of which 106 are cataract-linked. Gene ontology enrichment validates epithelial and fiber expression, corroborating the meta-analysis. Whole embryonic-body-in silico subtraction and other analyses identify several new high-priority epithelial- and/or fiber-enriched genes (e.g., Casz1, Ell2). Furthermore, new insights into cell-specific regulatory processes at distinct stages are identified (e.g., ribonucleoprotein regulation in E12.5 epithelium). Finally, this data is made accessible at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/).</p><p><strong>Conclusions: </strong>This spatiotemporal transcriptome meta-analysis comprehensively informs on epithelium- and fiber-specific regulatory processes in developing, adult and aged lenses. Notably, it includes the first description of an embryonic stage (i.e., E12.5) representing early primary fiber differentiation, thus informing on the initial transcriptome changes as lens cell-types are readily distinguishable.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 4","pages":"42"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011134/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptome Meta-Analysis Uncovers Cell-Specific Regulatory Relationships in Embryonic, Juvenile, Adult, and Aged Mouse Lens Epithelium and Fibers.\",\"authors\":\"Matthieu Duot, Sarah Y Coomson, Sanjaya K Shrestha, M V Murali Krishna Nagulla, Yann Audic, Ruteja A Barve, Hongzhan Huang, Carole Gautier-Courteille, Luc Paillard, Salil A Lachke\",\"doi\":\"10.1167/iovs.66.4.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The lens transcriptome has been examined using microarrays and RNA-sequencing (RNA-seq). These omics data are the basis of the bioinformatics web-resource iSyTE that has identified new genes involved in lens development and cataract. The lens predominantly contains epithelial and fiber cells, and yet, presently, iSyTE is based on whole lens data. To gain cell-specific regulatory insights, we meta-analyzed isolated epithelium and fiber transcriptomes from embryonic/postnatal, adult and aged lenses.</p><p><strong>Methods: </strong>Mouse lens epithelium and fiber transcriptome public datasets at embryonic (E) and postnatal (P) stages E12.5, E14.5, E16.5, E18.5, P0.5, P0, P5, P13, and age one month, three months, six months, and two years were analyzed. Microarray or RNA-seq data were analyzed by appropriate methods and compared to other resources (e.g., Cat-Map, CompBio).</p><p><strong>Results: </strong>Across all RNA-seq datasets examined, 2466 genes are differentially expressed between epithelium and fibers, of which 106 are cataract-linked. Gene ontology enrichment validates epithelial and fiber expression, corroborating the meta-analysis. Whole embryonic-body-in silico subtraction and other analyses identify several new high-priority epithelial- and/or fiber-enriched genes (e.g., Casz1, Ell2). Furthermore, new insights into cell-specific regulatory processes at distinct stages are identified (e.g., ribonucleoprotein regulation in E12.5 epithelium). Finally, this data is made accessible at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/).</p><p><strong>Conclusions: </strong>This spatiotemporal transcriptome meta-analysis comprehensively informs on epithelium- and fiber-specific regulatory processes in developing, adult and aged lenses. Notably, it includes the first description of an embryonic stage (i.e., E12.5) representing early primary fiber differentiation, thus informing on the initial transcriptome changes as lens cell-types are readily distinguishable.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"66 4\",\"pages\":\"42\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.66.4.42\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.4.42","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Transcriptome Meta-Analysis Uncovers Cell-Specific Regulatory Relationships in Embryonic, Juvenile, Adult, and Aged Mouse Lens Epithelium and Fibers.
Purpose: The lens transcriptome has been examined using microarrays and RNA-sequencing (RNA-seq). These omics data are the basis of the bioinformatics web-resource iSyTE that has identified new genes involved in lens development and cataract. The lens predominantly contains epithelial and fiber cells, and yet, presently, iSyTE is based on whole lens data. To gain cell-specific regulatory insights, we meta-analyzed isolated epithelium and fiber transcriptomes from embryonic/postnatal, adult and aged lenses.
Methods: Mouse lens epithelium and fiber transcriptome public datasets at embryonic (E) and postnatal (P) stages E12.5, E14.5, E16.5, E18.5, P0.5, P0, P5, P13, and age one month, three months, six months, and two years were analyzed. Microarray or RNA-seq data were analyzed by appropriate methods and compared to other resources (e.g., Cat-Map, CompBio).
Results: Across all RNA-seq datasets examined, 2466 genes are differentially expressed between epithelium and fibers, of which 106 are cataract-linked. Gene ontology enrichment validates epithelial and fiber expression, corroborating the meta-analysis. Whole embryonic-body-in silico subtraction and other analyses identify several new high-priority epithelial- and/or fiber-enriched genes (e.g., Casz1, Ell2). Furthermore, new insights into cell-specific regulatory processes at distinct stages are identified (e.g., ribonucleoprotein regulation in E12.5 epithelium). Finally, this data is made accessible at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/).
Conclusions: This spatiotemporal transcriptome meta-analysis comprehensively informs on epithelium- and fiber-specific regulatory processes in developing, adult and aged lenses. Notably, it includes the first description of an embryonic stage (i.e., E12.5) representing early primary fiber differentiation, thus informing on the initial transcriptome changes as lens cell-types are readily distinguishable.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.