通过参数链接减少了DDMS模型中持续时间的选择。

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2024-10-24 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2024.2419505
Fernando Henrique de Paula E Silva Mendes, Douglas Eduardo Turatti, Guilherme Pumi
{"title":"通过参数链接减少了DDMS模型中持续时间的选择。","authors":"Fernando Henrique de Paula E Silva Mendes, Douglas Eduardo Turatti, Guilherme Pumi","doi":"10.1080/02664763.2024.2419505","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important hyper-parameters in duration-dependent Markov-switching (DDMS) models is the duration of the hidden states. Because there is currently no procedure for estimating this duration or testing whether a given duration is appropriate for a given data set, an ad hoc duration choice must be heuristically justified. In this paper, we propose and examine a methodology that mitigates the choice of duration in DDMS models when forecasting is the goal. The novelty of this paper is the use of the asymmetric Aranda-Ordaz parametric link function to model transition probabilities in DDMS models, instead of the commonly applied logit link. The idea behind this approach is that any incorrect duration choice is compensated for by the parameter in the link, increasing model flexibility. Two Monte Carlo simulations, based on classical applications of DDMS models, are employed to evaluate the methodology. In addition, an empirical investigation is carried out to forecast the volatility of the S&P500, which showcases the capabilities of the proposed model.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 6","pages":"1219-1238"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035960/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigating the choice of the duration in DDMS models through a parametric link.\",\"authors\":\"Fernando Henrique de Paula E Silva Mendes, Douglas Eduardo Turatti, Guilherme Pumi\",\"doi\":\"10.1080/02664763.2024.2419505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most important hyper-parameters in duration-dependent Markov-switching (DDMS) models is the duration of the hidden states. Because there is currently no procedure for estimating this duration or testing whether a given duration is appropriate for a given data set, an ad hoc duration choice must be heuristically justified. In this paper, we propose and examine a methodology that mitigates the choice of duration in DDMS models when forecasting is the goal. The novelty of this paper is the use of the asymmetric Aranda-Ordaz parametric link function to model transition probabilities in DDMS models, instead of the commonly applied logit link. The idea behind this approach is that any incorrect duration choice is compensated for by the parameter in the link, increasing model flexibility. Two Monte Carlo simulations, based on classical applications of DDMS models, are employed to evaluate the methodology. In addition, an empirical investigation is carried out to forecast the volatility of the S&P500, which showcases the capabilities of the proposed model.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 6\",\"pages\":\"1219-1238\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035960/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2419505\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2419505","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在依赖持续时间的马尔可夫切换(DDMS)模型中,最重要的超参数之一是隐藏状态的持续时间。由于目前还没有评估该持续时间或测试给定持续时间是否适合给定数据集的过程,因此必须启发式地证明临时持续时间的选择是合理的。在本文中,我们提出并研究了一种方法,当预测是目标时,减少了DDMS模型中持续时间的选择。本文的新颖之处在于使用非对称Aranda-Ordaz参数链接函数来模拟DDMS模型中的转移概率,而不是通常使用的logit链接。这种方法背后的思想是,任何不正确的持续时间选择都可以通过链接中的参数进行补偿,从而增加模型的灵活性。基于DDMS模型的经典应用,采用两个蒙特卡罗模拟来评估该方法。此外,本文还对标准普尔500指数的波动率进行了实证研究,验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating the choice of the duration in DDMS models through a parametric link.

One of the most important hyper-parameters in duration-dependent Markov-switching (DDMS) models is the duration of the hidden states. Because there is currently no procedure for estimating this duration or testing whether a given duration is appropriate for a given data set, an ad hoc duration choice must be heuristically justified. In this paper, we propose and examine a methodology that mitigates the choice of duration in DDMS models when forecasting is the goal. The novelty of this paper is the use of the asymmetric Aranda-Ordaz parametric link function to model transition probabilities in DDMS models, instead of the commonly applied logit link. The idea behind this approach is that any incorrect duration choice is compensated for by the parameter in the link, increasing model flexibility. Two Monte Carlo simulations, based on classical applications of DDMS models, are employed to evaluate the methodology. In addition, an empirical investigation is carried out to forecast the volatility of the S&P500, which showcases the capabilities of the proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信