{"title":"高尔基膜相关降解途径的发现,GOMED:聚焦于15年的超微结构分析。","authors":"Satoko Arakawa, Hirofumi Yamaguchi, Shigeomi Shimizu","doi":"10.1093/jmicro/dfaf023","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we focus on the ultrastructural characteristics of the Golgi membrane-associated degradation (GOMED) pathway, which have been clarified by electron microscopy and highlight recent advances in the elucidation of its molecular mechanism and physiological roles. The discovery of GOMED, an Atg5/Atg7-independent degradation pathway that differs from canonical autophagy in membrane origin, stimuli, and substrate specificity, has substantially expanded our understanding of intracellular degradation systems. In 2009, we identified GOMED as a novel, evolutionarily conserved autophagic pathway and demonstrated its role in intracellular degradation across eukaryotes, from yeast to mammals. We identified the conserved protein Hsv2/Wipi3 as an essential GOMED protein, which translocates to the trans-Golgi upon induction and remodels Golgi membranes into cup-shaped structures that engulf cytoplasmic components for lysosomal degradation. These processes contribute to organelle and secretory granule turnover, as well as mitochondrial clearance during erythroid differentiation. Moreover, neuronal-specific ablation of Wipi3 in mice causes severe cerebellar degeneration, implicating GOMED in tissue development and homeostasis. As these mechanisms are associated with diseases, such as neurodegenerative disorders and cancer, GOMED mechanisms should also be considered when establishing therapeutic strategies for these diseases.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Golgi Membrane-associated Degradation Pathway, GOMED: A Focus on 15 Years of Ultrastructural Analyses.\",\"authors\":\"Satoko Arakawa, Hirofumi Yamaguchi, Shigeomi Shimizu\",\"doi\":\"10.1093/jmicro/dfaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this review, we focus on the ultrastructural characteristics of the Golgi membrane-associated degradation (GOMED) pathway, which have been clarified by electron microscopy and highlight recent advances in the elucidation of its molecular mechanism and physiological roles. The discovery of GOMED, an Atg5/Atg7-independent degradation pathway that differs from canonical autophagy in membrane origin, stimuli, and substrate specificity, has substantially expanded our understanding of intracellular degradation systems. In 2009, we identified GOMED as a novel, evolutionarily conserved autophagic pathway and demonstrated its role in intracellular degradation across eukaryotes, from yeast to mammals. We identified the conserved protein Hsv2/Wipi3 as an essential GOMED protein, which translocates to the trans-Golgi upon induction and remodels Golgi membranes into cup-shaped structures that engulf cytoplasmic components for lysosomal degradation. These processes contribute to organelle and secretory granule turnover, as well as mitochondrial clearance during erythroid differentiation. Moreover, neuronal-specific ablation of Wipi3 in mice causes severe cerebellar degeneration, implicating GOMED in tissue development and homeostasis. As these mechanisms are associated with diseases, such as neurodegenerative disorders and cancer, GOMED mechanisms should also be considered when establishing therapeutic strategies for these diseases.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfaf023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfaf023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery of Golgi Membrane-associated Degradation Pathway, GOMED: A Focus on 15 Years of Ultrastructural Analyses.
In this review, we focus on the ultrastructural characteristics of the Golgi membrane-associated degradation (GOMED) pathway, which have been clarified by electron microscopy and highlight recent advances in the elucidation of its molecular mechanism and physiological roles. The discovery of GOMED, an Atg5/Atg7-independent degradation pathway that differs from canonical autophagy in membrane origin, stimuli, and substrate specificity, has substantially expanded our understanding of intracellular degradation systems. In 2009, we identified GOMED as a novel, evolutionarily conserved autophagic pathway and demonstrated its role in intracellular degradation across eukaryotes, from yeast to mammals. We identified the conserved protein Hsv2/Wipi3 as an essential GOMED protein, which translocates to the trans-Golgi upon induction and remodels Golgi membranes into cup-shaped structures that engulf cytoplasmic components for lysosomal degradation. These processes contribute to organelle and secretory granule turnover, as well as mitochondrial clearance during erythroid differentiation. Moreover, neuronal-specific ablation of Wipi3 in mice causes severe cerebellar degeneration, implicating GOMED in tissue development and homeostasis. As these mechanisms are associated with diseases, such as neurodegenerative disorders and cancer, GOMED mechanisms should also be considered when establishing therapeutic strategies for these diseases.