Xiaoming Gong, Ian P Boydstun, William T Lawhon, Nancy N Hanna, Palak B Wall, Aaron Flickinger, E Eugenie Hartmann, Richard W Hertle
{"title":"儿童眼球震颤综合征患儿遗传眼部疾病的临床谱和分子特征","authors":"Xiaoming Gong, Ian P Boydstun, William T Lawhon, Nancy N Hanna, Palak B Wall, Aaron Flickinger, E Eugenie Hartmann, Richard W Hertle","doi":"10.1167/iovs.66.4.39","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Infantile nystagmus syndrome (INS), the most prevalent form of nystagmus in children, often indicates underlying ocular and neurological conditions. Genetic assessment plays a crucial role in clinical management, genetic counseling, and access to emerging gene-based therapies. This study aims to characterize the clinical and genetic landscape of inherited ocular diseases (IODs) in children with INS.</p><p><strong>Methods: </strong>We retrospectively analyzed clinical and genetic data from 205 unrelated pediatric patients with INS enrolled in an IRB-approved nystagmus registry (2010-2024). All underwent next-generation sequencing (NGS) with targeted gene panels to detect pathogenic variants.</p><p><strong>Results: </strong>The cohort comprised 117 males and 88 females (mean [SD] age, 8.85 [10.37] years). The most common INS-associated IODs included albinism (32%), Leber congenital amaurosis (LCA) (14%), and achromatopsia (14%). Genetic testing achieved a definitive diagnosis in 85 of 205 patients, yielding a molecular diagnostic rate of 41.5%. A total of 83 pathogenic and likely pathogenic variants were identified across 30 genes. The seven most frequently disease-causing genes-TYR, CNGB3, RPGR, GPR143, ABCA4, OCA2 and FRMD7-accounted for 65% of the genetically solved cases. Additionally, eight genes associated with LCA (AIPL1, CABP4, GUCY2D, IMPDH1, NMNAT1, RDH12, PRPH2, and RPGRIP1) contributed to 15% of these cases.</p><p><strong>Conclusions: </strong>This study underscores the utility of NGS in diagnosing INS-associated IODs, providing essential insights for targeted interventions and identifying patients as candidates potentially eligible for ongoing gene-based therapy clinical trials.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 4","pages":"39"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical Spectrum and Molecular Characteristics of Inherited Ocular Diseases in a Cohort of Pediatric Patients With Infantile Nystagmus Syndrome.\",\"authors\":\"Xiaoming Gong, Ian P Boydstun, William T Lawhon, Nancy N Hanna, Palak B Wall, Aaron Flickinger, E Eugenie Hartmann, Richard W Hertle\",\"doi\":\"10.1167/iovs.66.4.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Infantile nystagmus syndrome (INS), the most prevalent form of nystagmus in children, often indicates underlying ocular and neurological conditions. Genetic assessment plays a crucial role in clinical management, genetic counseling, and access to emerging gene-based therapies. This study aims to characterize the clinical and genetic landscape of inherited ocular diseases (IODs) in children with INS.</p><p><strong>Methods: </strong>We retrospectively analyzed clinical and genetic data from 205 unrelated pediatric patients with INS enrolled in an IRB-approved nystagmus registry (2010-2024). All underwent next-generation sequencing (NGS) with targeted gene panels to detect pathogenic variants.</p><p><strong>Results: </strong>The cohort comprised 117 males and 88 females (mean [SD] age, 8.85 [10.37] years). The most common INS-associated IODs included albinism (32%), Leber congenital amaurosis (LCA) (14%), and achromatopsia (14%). Genetic testing achieved a definitive diagnosis in 85 of 205 patients, yielding a molecular diagnostic rate of 41.5%. A total of 83 pathogenic and likely pathogenic variants were identified across 30 genes. The seven most frequently disease-causing genes-TYR, CNGB3, RPGR, GPR143, ABCA4, OCA2 and FRMD7-accounted for 65% of the genetically solved cases. Additionally, eight genes associated with LCA (AIPL1, CABP4, GUCY2D, IMPDH1, NMNAT1, RDH12, PRPH2, and RPGRIP1) contributed to 15% of these cases.</p><p><strong>Conclusions: </strong>This study underscores the utility of NGS in diagnosing INS-associated IODs, providing essential insights for targeted interventions and identifying patients as candidates potentially eligible for ongoing gene-based therapy clinical trials.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"66 4\",\"pages\":\"39\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.66.4.39\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.4.39","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Clinical Spectrum and Molecular Characteristics of Inherited Ocular Diseases in a Cohort of Pediatric Patients With Infantile Nystagmus Syndrome.
Purpose: Infantile nystagmus syndrome (INS), the most prevalent form of nystagmus in children, often indicates underlying ocular and neurological conditions. Genetic assessment plays a crucial role in clinical management, genetic counseling, and access to emerging gene-based therapies. This study aims to characterize the clinical and genetic landscape of inherited ocular diseases (IODs) in children with INS.
Methods: We retrospectively analyzed clinical and genetic data from 205 unrelated pediatric patients with INS enrolled in an IRB-approved nystagmus registry (2010-2024). All underwent next-generation sequencing (NGS) with targeted gene panels to detect pathogenic variants.
Results: The cohort comprised 117 males and 88 females (mean [SD] age, 8.85 [10.37] years). The most common INS-associated IODs included albinism (32%), Leber congenital amaurosis (LCA) (14%), and achromatopsia (14%). Genetic testing achieved a definitive diagnosis in 85 of 205 patients, yielding a molecular diagnostic rate of 41.5%. A total of 83 pathogenic and likely pathogenic variants were identified across 30 genes. The seven most frequently disease-causing genes-TYR, CNGB3, RPGR, GPR143, ABCA4, OCA2 and FRMD7-accounted for 65% of the genetically solved cases. Additionally, eight genes associated with LCA (AIPL1, CABP4, GUCY2D, IMPDH1, NMNAT1, RDH12, PRPH2, and RPGRIP1) contributed to 15% of these cases.
Conclusions: This study underscores the utility of NGS in diagnosing INS-associated IODs, providing essential insights for targeted interventions and identifying patients as candidates potentially eligible for ongoing gene-based therapy clinical trials.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.