小白蛋白神经元与动态刺激的皮质编码:一个网络模型。

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Jian Carlo Nocon, Isaac Paul Boyd, Howard Gritton, Xue Han, Kamal Sen
{"title":"小白蛋白神经元与动态刺激的皮质编码:一个网络模型。","authors":"Jian Carlo Nocon, Isaac Paul Boyd, Howard Gritton, Xue Han, Kamal Sen","doi":"10.1152/jn.00283.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical circuits feature both excitatory and inhibitory cells that underlie the encoding of dynamic sensory stimuli, e.g., speech, music, odors, and natural scenes. While previous studies have shown that inhibition plays an important role in shaping the neural code, how excitatory and inhibitory cells coordinate to enhance encoding of temporally dynamic stimuli is not fully understood. Recent experimental recordings in mouse auditory cortex have shown that optogenetic suppression of parvalbumin neurons results in a decrease of neural discriminability of dynamic stimuli. Here, we present a multilayer model of a cortical circuit that mechanistically explains these results. The model is based on parvalbumin neurons which respond to both stimulus onsets and offsets, as observed experimentally, and incorporates characteristic short-term synaptic plasticity profiles of excitatory and parvalbumin neurons. We reveal that by tuning the relative strengths of onset and offset inputs to parvalbumin neurons, the model generates different regimes of coding dominated by rapid firing rate modulations or spike timing. Moreover, the model replicates the experimentally observed reduction in neural discrimination performance during optogenetic suppression of parvalbumin neurons. These results suggest that distinct onset and offset inputs to parvalbumin neurons enhance cortical discriminability of dynamic stimuli by encoding distinct temporal features, enhancing temporal coding, and reducing cortical noise.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parvalbumin Neurons and Cortical Coding of Dynamic Stimuli: A Network Model.\",\"authors\":\"Jian Carlo Nocon, Isaac Paul Boyd, Howard Gritton, Xue Han, Kamal Sen\",\"doi\":\"10.1152/jn.00283.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cortical circuits feature both excitatory and inhibitory cells that underlie the encoding of dynamic sensory stimuli, e.g., speech, music, odors, and natural scenes. While previous studies have shown that inhibition plays an important role in shaping the neural code, how excitatory and inhibitory cells coordinate to enhance encoding of temporally dynamic stimuli is not fully understood. Recent experimental recordings in mouse auditory cortex have shown that optogenetic suppression of parvalbumin neurons results in a decrease of neural discriminability of dynamic stimuli. Here, we present a multilayer model of a cortical circuit that mechanistically explains these results. The model is based on parvalbumin neurons which respond to both stimulus onsets and offsets, as observed experimentally, and incorporates characteristic short-term synaptic plasticity profiles of excitatory and parvalbumin neurons. We reveal that by tuning the relative strengths of onset and offset inputs to parvalbumin neurons, the model generates different regimes of coding dominated by rapid firing rate modulations or spike timing. Moreover, the model replicates the experimentally observed reduction in neural discrimination performance during optogenetic suppression of parvalbumin neurons. These results suggest that distinct onset and offset inputs to parvalbumin neurons enhance cortical discriminability of dynamic stimuli by encoding distinct temporal features, enhancing temporal coding, and reducing cortical noise.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00283.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00283.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

皮层回路具有兴奋性和抑制性细胞,它们是动态感觉刺激编码的基础,例如语音、音乐、气味和自然场景。虽然先前的研究表明,抑制在形成神经密码中起着重要作用,但兴奋性和抑制性细胞如何协调以增强对时间动态刺激的编码尚不完全清楚。最近在小鼠听觉皮层的实验记录表明,光遗传抑制小白蛋白神经元导致神经对动态刺激的辨别能力下降。在这里,我们提出了一个皮层回路的多层模型,从机制上解释了这些结果。该模型基于实验观察到的对刺激发作和抵消都有反应的小白蛋白神经元,并结合了兴奋性和小白蛋白神经元的短期突触可塑性特征。我们发现,通过调整小白蛋白神经元的起始和偏移输入的相对强度,该模型产生了由快速放电速率调节或峰值定时主导的不同编码机制。此外,该模型复制了实验观察到的在光遗传抑制小白蛋白神经元时神经识别性能降低的现象。这些结果表明,小白蛋白神经元的不同起始和偏移输入通过编码不同的时间特征、增强时间编码和减少皮质噪声来增强皮层对动态刺激的辨别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parvalbumin Neurons and Cortical Coding of Dynamic Stimuli: A Network Model.

Cortical circuits feature both excitatory and inhibitory cells that underlie the encoding of dynamic sensory stimuli, e.g., speech, music, odors, and natural scenes. While previous studies have shown that inhibition plays an important role in shaping the neural code, how excitatory and inhibitory cells coordinate to enhance encoding of temporally dynamic stimuli is not fully understood. Recent experimental recordings in mouse auditory cortex have shown that optogenetic suppression of parvalbumin neurons results in a decrease of neural discriminability of dynamic stimuli. Here, we present a multilayer model of a cortical circuit that mechanistically explains these results. The model is based on parvalbumin neurons which respond to both stimulus onsets and offsets, as observed experimentally, and incorporates characteristic short-term synaptic plasticity profiles of excitatory and parvalbumin neurons. We reveal that by tuning the relative strengths of onset and offset inputs to parvalbumin neurons, the model generates different regimes of coding dominated by rapid firing rate modulations or spike timing. Moreover, the model replicates the experimentally observed reduction in neural discrimination performance during optogenetic suppression of parvalbumin neurons. These results suggest that distinct onset and offset inputs to parvalbumin neurons enhance cortical discriminability of dynamic stimuli by encoding distinct temporal features, enhancing temporal coding, and reducing cortical noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信