利用γ-散度稳健估计潜伏期和暴露时间。

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2024-11-06 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2024.2420221
Daisuke Yoneoka, Takayuki Kawashima, Yuta Tanoue, Shuhei Nomura, Akifumi Eguchi
{"title":"利用γ-散度稳健估计潜伏期和暴露时间。","authors":"Daisuke Yoneoka, Takayuki Kawashima, Yuta Tanoue, Shuhei Nomura, Akifumi Eguchi","doi":"10.1080/02664763.2024.2420221","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating the exposure time to single infectious pathogens and the associated incubation period, based on symptom onset data, is crucial for identifying infection sources and implementing public health interventions. However, data from rapid surveillance systems designed for early outbreak warning often come with outliers originated from individuals who were not directly exposed to the initial source of infection (i.e. tertiary and subsequent infection cases), making the estimation of exposure time challenging. To address this issue, this study uses a three-parameter lognormal distribution and proposes a new <i>γ</i>-divergence-based robust approach for estimating the parameter corresponding to exposure time with a tailored optimization procedure using the majorization-minimization algorithm, which ensures the monotonic decreasing property of the objective function. Comprehensive numerical experiments and real data analyses suggest that our method is superior to conventional methods in terms of bias, mean squared error, and coverage probability of 95% confidence intervals.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 6","pages":"1239-1257"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust estimation of the incubation period and the time of exposure using <i>γ</i>-divergence.\",\"authors\":\"Daisuke Yoneoka, Takayuki Kawashima, Yuta Tanoue, Shuhei Nomura, Akifumi Eguchi\",\"doi\":\"10.1080/02664763.2024.2420221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating the exposure time to single infectious pathogens and the associated incubation period, based on symptom onset data, is crucial for identifying infection sources and implementing public health interventions. However, data from rapid surveillance systems designed for early outbreak warning often come with outliers originated from individuals who were not directly exposed to the initial source of infection (i.e. tertiary and subsequent infection cases), making the estimation of exposure time challenging. To address this issue, this study uses a three-parameter lognormal distribution and proposes a new <i>γ</i>-divergence-based robust approach for estimating the parameter corresponding to exposure time with a tailored optimization procedure using the majorization-minimization algorithm, which ensures the monotonic decreasing property of the objective function. Comprehensive numerical experiments and real data analyses suggest that our method is superior to conventional methods in terms of bias, mean squared error, and coverage probability of 95% confidence intervals.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 6\",\"pages\":\"1239-1257\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2420221\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2420221","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

根据症状发作数据估计接触单一传染性病原体的时间和相关潜伏期,对于确定感染源和实施公共卫生干预措施至关重要。然而,为疫情早期预警而设计的快速监测系统的数据往往存在异常值,这些异常值来自没有直接接触最初感染源(即第三次和随后的感染病例)的个人,这使得对接触时间的估计具有挑战性。为了解决这一问题,本文采用三参数对数正态分布,提出了一种新的基于γ-散度的鲁棒方法来估计暴露时间对应的参数,并使用最大化-最小化算法定制优化程序,保证了目标函数的单调递减性。综合数值实验和实际数据分析表明,我们的方法在偏倚、均方误差和95%置信区间的覆盖概率方面优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust estimation of the incubation period and the time of exposure using γ-divergence.

Estimating the exposure time to single infectious pathogens and the associated incubation period, based on symptom onset data, is crucial for identifying infection sources and implementing public health interventions. However, data from rapid surveillance systems designed for early outbreak warning often come with outliers originated from individuals who were not directly exposed to the initial source of infection (i.e. tertiary and subsequent infection cases), making the estimation of exposure time challenging. To address this issue, this study uses a three-parameter lognormal distribution and proposes a new γ-divergence-based robust approach for estimating the parameter corresponding to exposure time with a tailored optimization procedure using the majorization-minimization algorithm, which ensures the monotonic decreasing property of the objective function. Comprehensive numerical experiments and real data analyses suggest that our method is superior to conventional methods in terms of bias, mean squared error, and coverage probability of 95% confidence intervals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信