Jinyan Wu, Haiying Hu, Lidong Dai, Ziming Hu, Song Luo
{"title":"多砧仪器中地壳条件下含水流体的电导率测量。","authors":"Jinyan Wu, Haiying Hu, Lidong Dai, Ziming Hu, Song Luo","doi":"10.1063/5.0231628","DOIUrl":null,"url":null,"abstract":"<p><p>The electrical conductivity of aqueous fluids is critical for interpreting the electrical anomalies observed by magnetotellurics in the Earth's crust. Conductivity measurements of fluids at high temperature and pressure were mainly conducted in cold-sealed pressure vessels, hydrothermal diamond anvil cells, and piston-cylinder apparatus, by using precious metals, such as Pt-Rh or Au-Pd as sample capsules. However, this research has never been performed in a multi-anvil apparatus. In addition, metal capsules employed in previous studies were costly and difficult to manufacture mechanically in the laboratory. In this study, we designed a novel, economical, chemical inertness, and tractable sample capsule made of polytetrafluoroethylene (PTFE), and by using this capsule, we successfully measured the conductivity of NaCl solutions in a multi-anvil apparatus under conditions of 323-598 K and 0.5-1.0 GPa. Our results are consistent with those from diamond anvil cells and piston-cylinder apparatus. Besides being used in conductivity measurement, the new and low-cost method has potential applications for investigating other physicochemical properties, such as rock-water interactions and fluid sound velocity under shallow crustal conditions. Furthermore, higher temperature and pressure can be realized by replacing the PTFE components with metallic materials, enabling more extensive exploration of fluid behavior in the Earth's deep interior.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical conductivity measurements of aqueous fluids under crustal conditions in multi-anvil apparatus.\",\"authors\":\"Jinyan Wu, Haiying Hu, Lidong Dai, Ziming Hu, Song Luo\",\"doi\":\"10.1063/5.0231628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrical conductivity of aqueous fluids is critical for interpreting the electrical anomalies observed by magnetotellurics in the Earth's crust. Conductivity measurements of fluids at high temperature and pressure were mainly conducted in cold-sealed pressure vessels, hydrothermal diamond anvil cells, and piston-cylinder apparatus, by using precious metals, such as Pt-Rh or Au-Pd as sample capsules. However, this research has never been performed in a multi-anvil apparatus. In addition, metal capsules employed in previous studies were costly and difficult to manufacture mechanically in the laboratory. In this study, we designed a novel, economical, chemical inertness, and tractable sample capsule made of polytetrafluoroethylene (PTFE), and by using this capsule, we successfully measured the conductivity of NaCl solutions in a multi-anvil apparatus under conditions of 323-598 K and 0.5-1.0 GPa. Our results are consistent with those from diamond anvil cells and piston-cylinder apparatus. Besides being used in conductivity measurement, the new and low-cost method has potential applications for investigating other physicochemical properties, such as rock-water interactions and fluid sound velocity under shallow crustal conditions. Furthermore, higher temperature and pressure can be realized by replacing the PTFE components with metallic materials, enabling more extensive exploration of fluid behavior in the Earth's deep interior.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"96 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231628\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0231628","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Electrical conductivity measurements of aqueous fluids under crustal conditions in multi-anvil apparatus.
The electrical conductivity of aqueous fluids is critical for interpreting the electrical anomalies observed by magnetotellurics in the Earth's crust. Conductivity measurements of fluids at high temperature and pressure were mainly conducted in cold-sealed pressure vessels, hydrothermal diamond anvil cells, and piston-cylinder apparatus, by using precious metals, such as Pt-Rh or Au-Pd as sample capsules. However, this research has never been performed in a multi-anvil apparatus. In addition, metal capsules employed in previous studies were costly and difficult to manufacture mechanically in the laboratory. In this study, we designed a novel, economical, chemical inertness, and tractable sample capsule made of polytetrafluoroethylene (PTFE), and by using this capsule, we successfully measured the conductivity of NaCl solutions in a multi-anvil apparatus under conditions of 323-598 K and 0.5-1.0 GPa. Our results are consistent with those from diamond anvil cells and piston-cylinder apparatus. Besides being used in conductivity measurement, the new and low-cost method has potential applications for investigating other physicochemical properties, such as rock-water interactions and fluid sound velocity under shallow crustal conditions. Furthermore, higher temperature and pressure can be realized by replacing the PTFE components with metallic materials, enabling more extensive exploration of fluid behavior in the Earth's deep interior.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.