Zailong Chen, Shengxuan Xia, Shuo Yang, Baomin Wang, Shiwei Tang, Yurong Yang, Tian Cui, Shi Liu, Hongwei Wang
{"title":"可见光谱中不同双曲极化的铁电控制","authors":"Zailong Chen, Shengxuan Xia, Shuo Yang, Baomin Wang, Shiwei Tang, Yurong Yang, Tian Cui, Shi Liu, Hongwei Wang","doi":"10.1038/s41524-025-01644-z","DOIUrl":null,"url":null,"abstract":"<p>Low-dimensional van der Waals materials have attracted tremendous attention due to their exceptional physical, chemical, and mechanical properties, particularly their strong anisotropy in structural, electronic, and optical behaviors. Herein, we comprehensively studied diverse hyperbolic polaritons in quasi-one-dimensional ferroelectric material WOBr<sub>4</sub>, including their propagation patterns and frequencies, most notably, the electric-field and strain-driven elliptic-to-hyperbolic topological transition. Under moderate uniaxial strain or electric field, the optical absorption along the chain direction displays a threefold modulation in intensity and an approximately 1 eV frequency shift, while showing minor variation in the direction perpendicular to the chain. The pronounced tunability of anisotropic optical absorption is achieved through the regulation of 1D ferroelectric polarization by external stimuli, which controls the symmetry breaking of atomic orbitals involved in the optical transitions. We propose WOBr<sub>4</sub> as a versatile platform for ferroelectric control of hyperbolic polaritons, offering potential for advanced applications in photovoltaics, optoelectronics, and nanophotonics.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"4 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric control of diverse hyperbolic polaritons in the visible spectrum\",\"authors\":\"Zailong Chen, Shengxuan Xia, Shuo Yang, Baomin Wang, Shiwei Tang, Yurong Yang, Tian Cui, Shi Liu, Hongwei Wang\",\"doi\":\"10.1038/s41524-025-01644-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-dimensional van der Waals materials have attracted tremendous attention due to their exceptional physical, chemical, and mechanical properties, particularly their strong anisotropy in structural, electronic, and optical behaviors. Herein, we comprehensively studied diverse hyperbolic polaritons in quasi-one-dimensional ferroelectric material WOBr<sub>4</sub>, including their propagation patterns and frequencies, most notably, the electric-field and strain-driven elliptic-to-hyperbolic topological transition. Under moderate uniaxial strain or electric field, the optical absorption along the chain direction displays a threefold modulation in intensity and an approximately 1 eV frequency shift, while showing minor variation in the direction perpendicular to the chain. The pronounced tunability of anisotropic optical absorption is achieved through the regulation of 1D ferroelectric polarization by external stimuli, which controls the symmetry breaking of atomic orbitals involved in the optical transitions. We propose WOBr<sub>4</sub> as a versatile platform for ferroelectric control of hyperbolic polaritons, offering potential for advanced applications in photovoltaics, optoelectronics, and nanophotonics.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01644-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01644-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ferroelectric control of diverse hyperbolic polaritons in the visible spectrum
Low-dimensional van der Waals materials have attracted tremendous attention due to their exceptional physical, chemical, and mechanical properties, particularly their strong anisotropy in structural, electronic, and optical behaviors. Herein, we comprehensively studied diverse hyperbolic polaritons in quasi-one-dimensional ferroelectric material WOBr4, including their propagation patterns and frequencies, most notably, the electric-field and strain-driven elliptic-to-hyperbolic topological transition. Under moderate uniaxial strain or electric field, the optical absorption along the chain direction displays a threefold modulation in intensity and an approximately 1 eV frequency shift, while showing minor variation in the direction perpendicular to the chain. The pronounced tunability of anisotropic optical absorption is achieved through the regulation of 1D ferroelectric polarization by external stimuli, which controls the symmetry breaking of atomic orbitals involved in the optical transitions. We propose WOBr4 as a versatile platform for ferroelectric control of hyperbolic polaritons, offering potential for advanced applications in photovoltaics, optoelectronics, and nanophotonics.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.