{"title":"用于结肠靶向和炎症性肠病相关结肠癌治疗的含盐酸沙硝唑口服纳米颗粒制剂的研制","authors":"Debgopal Ganguly, Ananta Choudhury, Subhabrota Majumdar","doi":"10.2174/0113816128368738250414070421","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colon-targeted drug delivery is a crucial area of research aimed at treating local disorders like IBD, including ulcerative colitis and Crohn's disease. By delivering drugs directly to the colon, this approach enhances therapeutic efficacy and minimizes systemic toxicity. Nanoparticles are an effective vehicle for controlled drug delivery, improving treatment outcomes for colon-specific diseases.</p><p><strong>Objective: </strong>The study aimed to develop an oral nanoparticulate formulation of Satranidazole (STZ) using a solvent evaporation technique for colonic targeting and characterize its physicochemical properties, compatibility, and in vitro drug release profile.</p><p><strong>Methods: </strong>Using a modified solvent evaporation method, STZ-loaded nanoparticles (STZ-NPs) were formulated using Eudragit RS100 and RL100 polymers. Preformulation studies, including FT-IR and DSC, were performed to confirm the compatibility between the drug and polymers. The nanoparticles were evaluated in terms of entrapment efficiency, particle size, zeta potential, polydispersity index, and in-vitro drug release study.</p><p><strong>Results: </strong>The optimized formulation (F3) demonstrated the highest entrapment efficiency (83.55%) with particle sizes ranging from 107.9 nm to 302 nm and a zeta potential between -34.25 mV and +48.8 mV. In vitro drug release studies showed controlled release over 16 hours, with the optimized batch achieving 95.85% drug release, indicating effective accumulation in the inflamed colon.</p><p><strong>Conclusion: </strong>The Satranidazole-loaded nanoparticles, containing time- and pH-dependent polymers, successfully inhibited premature drug release in acidic environments and provided controlled release at colonic pH. Thus, this delivery system shows promise as an effective treatment for IBD, offering targeted drug release and reduced systemic toxicity.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Satranidazole HCl-Loaded Oral Nanoparticulate Formulation for Colon Targeting and Colon Cancer Therapy Associated with Inflammatory Bowel Disease.\",\"authors\":\"Debgopal Ganguly, Ananta Choudhury, Subhabrota Majumdar\",\"doi\":\"10.2174/0113816128368738250414070421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colon-targeted drug delivery is a crucial area of research aimed at treating local disorders like IBD, including ulcerative colitis and Crohn's disease. By delivering drugs directly to the colon, this approach enhances therapeutic efficacy and minimizes systemic toxicity. Nanoparticles are an effective vehicle for controlled drug delivery, improving treatment outcomes for colon-specific diseases.</p><p><strong>Objective: </strong>The study aimed to develop an oral nanoparticulate formulation of Satranidazole (STZ) using a solvent evaporation technique for colonic targeting and characterize its physicochemical properties, compatibility, and in vitro drug release profile.</p><p><strong>Methods: </strong>Using a modified solvent evaporation method, STZ-loaded nanoparticles (STZ-NPs) were formulated using Eudragit RS100 and RL100 polymers. Preformulation studies, including FT-IR and DSC, were performed to confirm the compatibility between the drug and polymers. The nanoparticles were evaluated in terms of entrapment efficiency, particle size, zeta potential, polydispersity index, and in-vitro drug release study.</p><p><strong>Results: </strong>The optimized formulation (F3) demonstrated the highest entrapment efficiency (83.55%) with particle sizes ranging from 107.9 nm to 302 nm and a zeta potential between -34.25 mV and +48.8 mV. In vitro drug release studies showed controlled release over 16 hours, with the optimized batch achieving 95.85% drug release, indicating effective accumulation in the inflamed colon.</p><p><strong>Conclusion: </strong>The Satranidazole-loaded nanoparticles, containing time- and pH-dependent polymers, successfully inhibited premature drug release in acidic environments and provided controlled release at colonic pH. Thus, this delivery system shows promise as an effective treatment for IBD, offering targeted drug release and reduced systemic toxicity.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128368738250414070421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128368738250414070421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Development of Satranidazole HCl-Loaded Oral Nanoparticulate Formulation for Colon Targeting and Colon Cancer Therapy Associated with Inflammatory Bowel Disease.
Background: Colon-targeted drug delivery is a crucial area of research aimed at treating local disorders like IBD, including ulcerative colitis and Crohn's disease. By delivering drugs directly to the colon, this approach enhances therapeutic efficacy and minimizes systemic toxicity. Nanoparticles are an effective vehicle for controlled drug delivery, improving treatment outcomes for colon-specific diseases.
Objective: The study aimed to develop an oral nanoparticulate formulation of Satranidazole (STZ) using a solvent evaporation technique for colonic targeting and characterize its physicochemical properties, compatibility, and in vitro drug release profile.
Methods: Using a modified solvent evaporation method, STZ-loaded nanoparticles (STZ-NPs) were formulated using Eudragit RS100 and RL100 polymers. Preformulation studies, including FT-IR and DSC, were performed to confirm the compatibility between the drug and polymers. The nanoparticles were evaluated in terms of entrapment efficiency, particle size, zeta potential, polydispersity index, and in-vitro drug release study.
Results: The optimized formulation (F3) demonstrated the highest entrapment efficiency (83.55%) with particle sizes ranging from 107.9 nm to 302 nm and a zeta potential between -34.25 mV and +48.8 mV. In vitro drug release studies showed controlled release over 16 hours, with the optimized batch achieving 95.85% drug release, indicating effective accumulation in the inflamed colon.
Conclusion: The Satranidazole-loaded nanoparticles, containing time- and pH-dependent polymers, successfully inhibited premature drug release in acidic environments and provided controlled release at colonic pH. Thus, this delivery system shows promise as an effective treatment for IBD, offering targeted drug release and reduced systemic toxicity.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.