Kai Bin Liew, Hiu Ching Phang, Vinie Ying Xuan Tan, Phei Er Kee, Long Chiau Ming, Palanirajan Vijayarajkumar Kumar, Siew-Keah Lee, A B M Helal Uddin, Ritu M Gilhotra, Arya Kadukkattil Ramanunny
{"title":"纳米颗粒作为癌症治疗的新型药物传递系统:现状和未来展望。","authors":"Kai Bin Liew, Hiu Ching Phang, Vinie Ying Xuan Tan, Phei Er Kee, Long Chiau Ming, Palanirajan Vijayarajkumar Kumar, Siew-Keah Lee, A B M Helal Uddin, Ritu M Gilhotra, Arya Kadukkattil Ramanunny","doi":"10.2174/0113816128368718250320060346","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer continues to pose a significant global health challenge, demanding innovative therapeutic approaches to overcome the limitations of conventional treatments like chemotherapy and radiotherapy. Nanoparticles (NPs) have emerged as promising tools for cancer therapy due to their unique physicochemical properties that enable targeted drug delivery, reduced systemic toxicity, and enhanced therapeutic efficacy. This comprehensive review delves into the mechanisms of NP-based drug delivery, highlighting both passive and active targeting strategies. It categorizes and discusses diverse NP types, including polymeric, lipid-based, and metallic nanoparticles, emphasizing their applications in enhancing the bioavailability and specificity of anticancer agents. This review also explores the integration of advanced technologies, such as theranostics and artificial intelligence, to optimize NP design and functionality for personalized medicine. However, challenges remain, including issues related to toxicity, drug resistance, and manufacturing scalability. Addressing these barriers requires interdisciplinary research focused on developing stimuli-responsive NPs, improving biocompatibility, and incorporating multimodal therapeutic platforms. Although substantial progress has been made, this review is limited by the paucity of clinical trials validating NP efficacy and safety in diverse patient populations. Future endeavors should prioritize translational research to bridge the gap between preclinical innovations and clinical applications, ensuring that these transformative technologies benefit a broader spectrum of cancer patients. The review underscores the immense potential of NPs in redefining cancer treatment while advocating for sustained research to address existing limitations and unlock their full therapeutic promise.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticles as Novel Drug Delivery Systems for Cancer Treatment: Current Status and Future Perspectives.\",\"authors\":\"Kai Bin Liew, Hiu Ching Phang, Vinie Ying Xuan Tan, Phei Er Kee, Long Chiau Ming, Palanirajan Vijayarajkumar Kumar, Siew-Keah Lee, A B M Helal Uddin, Ritu M Gilhotra, Arya Kadukkattil Ramanunny\",\"doi\":\"10.2174/0113816128368718250320060346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer continues to pose a significant global health challenge, demanding innovative therapeutic approaches to overcome the limitations of conventional treatments like chemotherapy and radiotherapy. Nanoparticles (NPs) have emerged as promising tools for cancer therapy due to their unique physicochemical properties that enable targeted drug delivery, reduced systemic toxicity, and enhanced therapeutic efficacy. This comprehensive review delves into the mechanisms of NP-based drug delivery, highlighting both passive and active targeting strategies. It categorizes and discusses diverse NP types, including polymeric, lipid-based, and metallic nanoparticles, emphasizing their applications in enhancing the bioavailability and specificity of anticancer agents. This review also explores the integration of advanced technologies, such as theranostics and artificial intelligence, to optimize NP design and functionality for personalized medicine. However, challenges remain, including issues related to toxicity, drug resistance, and manufacturing scalability. Addressing these barriers requires interdisciplinary research focused on developing stimuli-responsive NPs, improving biocompatibility, and incorporating multimodal therapeutic platforms. Although substantial progress has been made, this review is limited by the paucity of clinical trials validating NP efficacy and safety in diverse patient populations. Future endeavors should prioritize translational research to bridge the gap between preclinical innovations and clinical applications, ensuring that these transformative technologies benefit a broader spectrum of cancer patients. The review underscores the immense potential of NPs in redefining cancer treatment while advocating for sustained research to address existing limitations and unlock their full therapeutic promise.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128368718250320060346\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128368718250320060346","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Nanoparticles as Novel Drug Delivery Systems for Cancer Treatment: Current Status and Future Perspectives.
Cancer continues to pose a significant global health challenge, demanding innovative therapeutic approaches to overcome the limitations of conventional treatments like chemotherapy and radiotherapy. Nanoparticles (NPs) have emerged as promising tools for cancer therapy due to their unique physicochemical properties that enable targeted drug delivery, reduced systemic toxicity, and enhanced therapeutic efficacy. This comprehensive review delves into the mechanisms of NP-based drug delivery, highlighting both passive and active targeting strategies. It categorizes and discusses diverse NP types, including polymeric, lipid-based, and metallic nanoparticles, emphasizing their applications in enhancing the bioavailability and specificity of anticancer agents. This review also explores the integration of advanced technologies, such as theranostics and artificial intelligence, to optimize NP design and functionality for personalized medicine. However, challenges remain, including issues related to toxicity, drug resistance, and manufacturing scalability. Addressing these barriers requires interdisciplinary research focused on developing stimuli-responsive NPs, improving biocompatibility, and incorporating multimodal therapeutic platforms. Although substantial progress has been made, this review is limited by the paucity of clinical trials validating NP efficacy and safety in diverse patient populations. Future endeavors should prioritize translational research to bridge the gap between preclinical innovations and clinical applications, ensuring that these transformative technologies benefit a broader spectrum of cancer patients. The review underscores the immense potential of NPs in redefining cancer treatment while advocating for sustained research to address existing limitations and unlock their full therapeutic promise.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.