综合代谢组学和蛋白质组学研究拟苗丸通过ptges3介导的花生四烯酸代谢改善AIA模型脂质稳态

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Ying Cai, Sifan Guo, Chunsheng Lin, Yan Wang, Chao Wang, Zhibo Wang, Dandan Xie, Yu Guan, Shi Qiu, Hui Dong, Aihua Zhang
{"title":"综合代谢组学和蛋白质组学研究拟苗丸通过ptges3介导的花生四烯酸代谢改善AIA模型脂质稳态","authors":"Ying Cai, Sifan Guo, Chunsheng Lin, Yan Wang, Chao Wang, Zhibo Wang, Dandan Xie, Yu Guan, Shi Qiu, Hui Dong, Aihua Zhang","doi":"10.2174/0113816128374077250410042947","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Simiao Pill (SMP) has been demonstrated to suppress inflammation and modulate immune function, thereby influencing the onset and progression of rheumatoid arthritis (RA). Nonetheless, the specific molecular mechanisms and targets through which SMP mediates metabolic regulation and enhances immune function have yet to be fully elucidated.</p><p><strong>Objective: </strong>In this study, we employed an integrated approach combining the analysis of dysregulated metabolites and proteins to identify, screen, and validate the metabolic regulatory targets of SMP in adjuvant-induced arthritis (AIA) rats by using pseudotargeted metabolomics and 4D-DIA quantitative proteomics methodologies.</p><p><strong>Methods: </strong>An AIA rat model was developed, and SMP was administered to AIA rats. Subsequently, assessments were conducted on paw edema, arthritis scores, histopathological changes and IL-1 β content of inflammatory factors in AIA rats. UHPLC-QTOF-MS/MS was employed to analyze endogenous metabolites in the serum. Metabolic pathway and protein profile were performed on the biomarkers. The protein-lipidphenotype map for the SMP-treated rats was constructed and the primary target closely related to the metabolic regulation of SMP was further screened and verified.</p><p><strong>Results: </strong>Pseudotargeted metabolomics analysis revealed that SMP can mitigate the down-regulation of lipid levels in AIA rats. Pathway enrichment analysis identified arachidonic acid metabolism as the most significantly affected metabolic pathway and SMP was found to substantially ameliorate the dysregulation of this pathway in AIA rats. Subsequent protein profiling led to the identification of five key proteins, with noteworthy obvious corrective effects observed on Ptges3 and Alox15 due to SMP treatment. A comprehensive protein- lipid-phenotypic landscape of SMP-treated rats was analyzed for the specific molecular expressions associated with the arachidonic acid pathway. According to the correlation matrix of dysregulated metabolite/ protein, we found that Ptges3 was ranked as the primary target closely related to the metabolic regulation of SMP, a finding further validated through immunofluorescence staining in rat joint and synovial cells.</p><p><strong>Conclusion: </strong>Our study confirmed that SMP exerts an anti-arthritic effect by modulating the arachidonic acid metabolic network via the Ptges3 protein in rat joints and human rheumatoid arthritis synovial fibroblasts. This finding offers a novel mechanistic insight into the pharmacological action of SMP in adjuvant-induced arthritis (AIA) in rats. It informs future research on the therapeutic potential of SMP in rheumatoid arthritis (RA).</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Metabolomics and Proteomics to Decipher Simiao Pill Improving Lipid Homeostasis through PTGES3-mediated Arachidonic Acid Metabolism in AIA Model.\",\"authors\":\"Ying Cai, Sifan Guo, Chunsheng Lin, Yan Wang, Chao Wang, Zhibo Wang, Dandan Xie, Yu Guan, Shi Qiu, Hui Dong, Aihua Zhang\",\"doi\":\"10.2174/0113816128374077250410042947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Simiao Pill (SMP) has been demonstrated to suppress inflammation and modulate immune function, thereby influencing the onset and progression of rheumatoid arthritis (RA). Nonetheless, the specific molecular mechanisms and targets through which SMP mediates metabolic regulation and enhances immune function have yet to be fully elucidated.</p><p><strong>Objective: </strong>In this study, we employed an integrated approach combining the analysis of dysregulated metabolites and proteins to identify, screen, and validate the metabolic regulatory targets of SMP in adjuvant-induced arthritis (AIA) rats by using pseudotargeted metabolomics and 4D-DIA quantitative proteomics methodologies.</p><p><strong>Methods: </strong>An AIA rat model was developed, and SMP was administered to AIA rats. Subsequently, assessments were conducted on paw edema, arthritis scores, histopathological changes and IL-1 β content of inflammatory factors in AIA rats. UHPLC-QTOF-MS/MS was employed to analyze endogenous metabolites in the serum. Metabolic pathway and protein profile were performed on the biomarkers. The protein-lipidphenotype map for the SMP-treated rats was constructed and the primary target closely related to the metabolic regulation of SMP was further screened and verified.</p><p><strong>Results: </strong>Pseudotargeted metabolomics analysis revealed that SMP can mitigate the down-regulation of lipid levels in AIA rats. Pathway enrichment analysis identified arachidonic acid metabolism as the most significantly affected metabolic pathway and SMP was found to substantially ameliorate the dysregulation of this pathway in AIA rats. Subsequent protein profiling led to the identification of five key proteins, with noteworthy obvious corrective effects observed on Ptges3 and Alox15 due to SMP treatment. A comprehensive protein- lipid-phenotypic landscape of SMP-treated rats was analyzed for the specific molecular expressions associated with the arachidonic acid pathway. According to the correlation matrix of dysregulated metabolite/ protein, we found that Ptges3 was ranked as the primary target closely related to the metabolic regulation of SMP, a finding further validated through immunofluorescence staining in rat joint and synovial cells.</p><p><strong>Conclusion: </strong>Our study confirmed that SMP exerts an anti-arthritic effect by modulating the arachidonic acid metabolic network via the Ptges3 protein in rat joints and human rheumatoid arthritis synovial fibroblasts. This finding offers a novel mechanistic insight into the pharmacological action of SMP in adjuvant-induced arthritis (AIA) in rats. It informs future research on the therapeutic potential of SMP in rheumatoid arthritis (RA).</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128374077250410042947\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128374077250410042947","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:四庙丸(SMP)具有抑制炎症和调节免疫功能的作用,从而影响类风湿关节炎(RA)的发生和发展。然而,SMP介导代谢调节和增强免疫功能的具体分子机制和靶点尚未完全阐明。目的:在本研究中,我们采用结合代谢异常产物和蛋白质分析的综合方法,通过假靶向代谢组学和4D-DIA定量蛋白质组学方法,鉴定、筛选和验证SMP在佐剂性关节炎(AIA)大鼠中的代谢调节靶点。方法:建立AIA大鼠模型,给药SMP。随后,对AIA大鼠足部水肿、关节炎评分、组织病理学改变及炎症因子IL-1 β含量进行评估。采用UHPLC-QTOF-MS/MS分析血清中内源性代谢物。对生物标志物进行代谢途径和蛋白质谱分析。构建SMP处理大鼠的蛋白-脂质表型图谱,进一步筛选和验证与SMP代谢调控密切相关的主要靶点。结果:假靶向代谢组学分析显示,SMP可减轻AIA大鼠脂质水平的下调。途径富集分析发现花生四烯酸代谢是受影响最显著的代谢途径,发现SMP可显著改善AIA大鼠该途径的失调。随后的蛋白分析鉴定出5个关键蛋白,SMP治疗对Ptges3和Alox15有明显的纠正作用。分析了smp处理大鼠的蛋白质-脂质综合表型景观,以了解花生四烯酸途径相关的特异性分子表达。根据失调代谢物/蛋白的相关矩阵,我们发现Ptges3被列为与SMP代谢调节密切相关的首要靶点,并通过大鼠关节和滑膜细胞的免疫荧光染色进一步验证了这一发现。结论:本研究证实SMP通过Ptges3蛋白调控花生四烯酸代谢网络在大鼠关节和人类风湿关节炎滑膜成纤维细胞中发挥抗关节炎作用。这一发现为SMP在大鼠佐剂性关节炎(AIA)中的药理作用提供了新的机制见解。它为SMP在类风湿关节炎(RA)治疗潜力的未来研究提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Metabolomics and Proteomics to Decipher Simiao Pill Improving Lipid Homeostasis through PTGES3-mediated Arachidonic Acid Metabolism in AIA Model.

Background: Simiao Pill (SMP) has been demonstrated to suppress inflammation and modulate immune function, thereby influencing the onset and progression of rheumatoid arthritis (RA). Nonetheless, the specific molecular mechanisms and targets through which SMP mediates metabolic regulation and enhances immune function have yet to be fully elucidated.

Objective: In this study, we employed an integrated approach combining the analysis of dysregulated metabolites and proteins to identify, screen, and validate the metabolic regulatory targets of SMP in adjuvant-induced arthritis (AIA) rats by using pseudotargeted metabolomics and 4D-DIA quantitative proteomics methodologies.

Methods: An AIA rat model was developed, and SMP was administered to AIA rats. Subsequently, assessments were conducted on paw edema, arthritis scores, histopathological changes and IL-1 β content of inflammatory factors in AIA rats. UHPLC-QTOF-MS/MS was employed to analyze endogenous metabolites in the serum. Metabolic pathway and protein profile were performed on the biomarkers. The protein-lipidphenotype map for the SMP-treated rats was constructed and the primary target closely related to the metabolic regulation of SMP was further screened and verified.

Results: Pseudotargeted metabolomics analysis revealed that SMP can mitigate the down-regulation of lipid levels in AIA rats. Pathway enrichment analysis identified arachidonic acid metabolism as the most significantly affected metabolic pathway and SMP was found to substantially ameliorate the dysregulation of this pathway in AIA rats. Subsequent protein profiling led to the identification of five key proteins, with noteworthy obvious corrective effects observed on Ptges3 and Alox15 due to SMP treatment. A comprehensive protein- lipid-phenotypic landscape of SMP-treated rats was analyzed for the specific molecular expressions associated with the arachidonic acid pathway. According to the correlation matrix of dysregulated metabolite/ protein, we found that Ptges3 was ranked as the primary target closely related to the metabolic regulation of SMP, a finding further validated through immunofluorescence staining in rat joint and synovial cells.

Conclusion: Our study confirmed that SMP exerts an anti-arthritic effect by modulating the arachidonic acid metabolic network via the Ptges3 protein in rat joints and human rheumatoid arthritis synovial fibroblasts. This finding offers a novel mechanistic insight into the pharmacological action of SMP in adjuvant-induced arthritis (AIA) in rats. It informs future research on the therapeutic potential of SMP in rheumatoid arthritis (RA).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信