Lu Zhao, Na Li, Xinrui Shi, Jiachen Zhang, Min Gao, Yankai Wei, Xuejia Li, Bei Du, Deming Sun, Hong Nian, Ruihua Wei
{"title":"IL-10-ADSCs通过miR-142-5p/RC3H1轴抑制T滤泡辅助细胞应答增强兔自身免疫性泪腺炎的治疗作用","authors":"Lu Zhao, Na Li, Xinrui Shi, Jiachen Zhang, Min Gao, Yankai Wei, Xuejia Li, Bei Du, Deming Sun, Hong Nian, Ruihua Wei","doi":"10.1167/iovs.66.4.66","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Mesenchymal stem cells (MSCs) represent a promising therapeutic strategy in clinical research for dry eye, and their immunomodulatory effects can be enhanced through genetic modification. In this study, we constructed interleukin-10 (IL-10) gene-modified adipose-derived MSCs (IL-10-ADSCs) and investigated their protective effects and underlying mechanisms on rabbit autoimmune dacryoadenitis, an animal model of autoimmune dry eye.</p><p><strong>Methods: </strong>ADSCs were isolated from rabbit adipose tissue and transduced with IL-10 overexpressing lentivirus. Then the preventive and therapeutic effects of IL-10-ADSCs on rabbit autoimmune dacryoadenitis were evaluated. Flow cytometry and Western blot were performed to assess the immunomodulatory effects of IL-10-ADSCs on T follicular helper (Tfh) cells. Bioinformatic analyses and functional gain and loss assays were used to determine the molecular mechanism underlying the effects of IL-10-ADSCs on Tfh responses.</p><p><strong>Results: </strong>We demonstrated that IL-10-ADSCs maintain the cell surface phenotype and multi-differentiation potentials of MSCs. Intravenous injection of IL-10-ADSCs markedly attenuated autoimmune dacryoadenitis, yielding significantly superior clinical and pathological improvements compared to ADSCs. Further investigation revealed that IL-10-ADSCs administration significantly suppressed Tfh cell responses in vivo and in vitro, contributing to reduced inflammation and improved tissue damage. Mechanistically, IL-10-ADSCs exert their suppressive function on Tfh cells partially through the miR-142-5p/RC3H1 axis. Notably, IL-10-ADSCs subconjunctivally administered after disease onset efficiently ameliorated the severity of autoimmune dacryoadenitis.</p><p><strong>Conclusions: </strong>IL-10-ADSCs ameliorate autoimmune dacryoadenitis by suppressing Tfh cell responses via suppressing the miR-142-5p/RC3H1 axis. The enhanced therapeutic effects of IL-10-ADSCs could be of significant value in improving the effectiveness of stem cell therapy in autoimmune dry eye.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 4","pages":"66"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Therapeutic Effect of IL-10-ADSCs on Rabbit Autoimmune Dacryoadenitis By Suppressing T Follicular Helper Cell Responses Via miR-142-5p/RC3H1 Axis.\",\"authors\":\"Lu Zhao, Na Li, Xinrui Shi, Jiachen Zhang, Min Gao, Yankai Wei, Xuejia Li, Bei Du, Deming Sun, Hong Nian, Ruihua Wei\",\"doi\":\"10.1167/iovs.66.4.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Mesenchymal stem cells (MSCs) represent a promising therapeutic strategy in clinical research for dry eye, and their immunomodulatory effects can be enhanced through genetic modification. In this study, we constructed interleukin-10 (IL-10) gene-modified adipose-derived MSCs (IL-10-ADSCs) and investigated their protective effects and underlying mechanisms on rabbit autoimmune dacryoadenitis, an animal model of autoimmune dry eye.</p><p><strong>Methods: </strong>ADSCs were isolated from rabbit adipose tissue and transduced with IL-10 overexpressing lentivirus. Then the preventive and therapeutic effects of IL-10-ADSCs on rabbit autoimmune dacryoadenitis were evaluated. Flow cytometry and Western blot were performed to assess the immunomodulatory effects of IL-10-ADSCs on T follicular helper (Tfh) cells. Bioinformatic analyses and functional gain and loss assays were used to determine the molecular mechanism underlying the effects of IL-10-ADSCs on Tfh responses.</p><p><strong>Results: </strong>We demonstrated that IL-10-ADSCs maintain the cell surface phenotype and multi-differentiation potentials of MSCs. Intravenous injection of IL-10-ADSCs markedly attenuated autoimmune dacryoadenitis, yielding significantly superior clinical and pathological improvements compared to ADSCs. Further investigation revealed that IL-10-ADSCs administration significantly suppressed Tfh cell responses in vivo and in vitro, contributing to reduced inflammation and improved tissue damage. Mechanistically, IL-10-ADSCs exert their suppressive function on Tfh cells partially through the miR-142-5p/RC3H1 axis. Notably, IL-10-ADSCs subconjunctivally administered after disease onset efficiently ameliorated the severity of autoimmune dacryoadenitis.</p><p><strong>Conclusions: </strong>IL-10-ADSCs ameliorate autoimmune dacryoadenitis by suppressing Tfh cell responses via suppressing the miR-142-5p/RC3H1 axis. The enhanced therapeutic effects of IL-10-ADSCs could be of significant value in improving the effectiveness of stem cell therapy in autoimmune dry eye.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"66 4\",\"pages\":\"66\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.66.4.66\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.4.66","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Enhanced Therapeutic Effect of IL-10-ADSCs on Rabbit Autoimmune Dacryoadenitis By Suppressing T Follicular Helper Cell Responses Via miR-142-5p/RC3H1 Axis.
Purpose: Mesenchymal stem cells (MSCs) represent a promising therapeutic strategy in clinical research for dry eye, and their immunomodulatory effects can be enhanced through genetic modification. In this study, we constructed interleukin-10 (IL-10) gene-modified adipose-derived MSCs (IL-10-ADSCs) and investigated their protective effects and underlying mechanisms on rabbit autoimmune dacryoadenitis, an animal model of autoimmune dry eye.
Methods: ADSCs were isolated from rabbit adipose tissue and transduced with IL-10 overexpressing lentivirus. Then the preventive and therapeutic effects of IL-10-ADSCs on rabbit autoimmune dacryoadenitis were evaluated. Flow cytometry and Western blot were performed to assess the immunomodulatory effects of IL-10-ADSCs on T follicular helper (Tfh) cells. Bioinformatic analyses and functional gain and loss assays were used to determine the molecular mechanism underlying the effects of IL-10-ADSCs on Tfh responses.
Results: We demonstrated that IL-10-ADSCs maintain the cell surface phenotype and multi-differentiation potentials of MSCs. Intravenous injection of IL-10-ADSCs markedly attenuated autoimmune dacryoadenitis, yielding significantly superior clinical and pathological improvements compared to ADSCs. Further investigation revealed that IL-10-ADSCs administration significantly suppressed Tfh cell responses in vivo and in vitro, contributing to reduced inflammation and improved tissue damage. Mechanistically, IL-10-ADSCs exert their suppressive function on Tfh cells partially through the miR-142-5p/RC3H1 axis. Notably, IL-10-ADSCs subconjunctivally administered after disease onset efficiently ameliorated the severity of autoimmune dacryoadenitis.
Conclusions: IL-10-ADSCs ameliorate autoimmune dacryoadenitis by suppressing Tfh cell responses via suppressing the miR-142-5p/RC3H1 axis. The enhanced therapeutic effects of IL-10-ADSCs could be of significant value in improving the effectiveness of stem cell therapy in autoimmune dry eye.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.