{"title":"非侵入性靶向神经调节的磁场方法研究进展。","authors":"Mozhgan Alipour, Maryam Abdolmaleki, Yaser Shabanpour, Alireza Zali, Farzad Ashrafi, Shabnam Nohesara, Behnam Hajipour-Verdom","doi":"10.3389/fnhum.2025.1489940","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromodulation, the targeted regulation of nerve activity, has emerged as a promising approach for treating various neurological and psychiatric disorders. While deep brain stimulation has shown efficacy, its invasive nature poses substantial risks, including surgical complications and high costs. In contrast, non-invasive neuromodulation techniques, particularly those utilizing magnetic fields (MFs), have gained increasing attention as safer, more accessible alternatives. Magnetothermal stimulation has emerged as an innovative method that enables precise modulation of neuronal ion channels through localized heating induced by interaction of MF with biological tissues. This review discusses the principles of MF-based neuromodulation and highlights the critical role of ion channels in synaptic transmission, and the therapeutic potential of these advanced techniques. Additionally, it highlights key challenges such as spatial targeting precision, safety considerations, and the long-term effects of magnetic exposure on brain function. The findings presente the promise of MF-based neuromodulation as a non-invasive, highly targeted therapeutic strategy for conditions such as epilepsy, movement disorders, and neurodegenerative diseases, with potential applications in chronic pain management and future clinical interventions.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1489940"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066545/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in magnetic field approaches for non-invasive targeting neuromodulation.\",\"authors\":\"Mozhgan Alipour, Maryam Abdolmaleki, Yaser Shabanpour, Alireza Zali, Farzad Ashrafi, Shabnam Nohesara, Behnam Hajipour-Verdom\",\"doi\":\"10.3389/fnhum.2025.1489940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuromodulation, the targeted regulation of nerve activity, has emerged as a promising approach for treating various neurological and psychiatric disorders. While deep brain stimulation has shown efficacy, its invasive nature poses substantial risks, including surgical complications and high costs. In contrast, non-invasive neuromodulation techniques, particularly those utilizing magnetic fields (MFs), have gained increasing attention as safer, more accessible alternatives. Magnetothermal stimulation has emerged as an innovative method that enables precise modulation of neuronal ion channels through localized heating induced by interaction of MF with biological tissues. This review discusses the principles of MF-based neuromodulation and highlights the critical role of ion channels in synaptic transmission, and the therapeutic potential of these advanced techniques. Additionally, it highlights key challenges such as spatial targeting precision, safety considerations, and the long-term effects of magnetic exposure on brain function. The findings presente the promise of MF-based neuromodulation as a non-invasive, highly targeted therapeutic strategy for conditions such as epilepsy, movement disorders, and neurodegenerative diseases, with potential applications in chronic pain management and future clinical interventions.</p>\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":\"19 \",\"pages\":\"1489940\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2025.1489940\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1489940","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Advances in magnetic field approaches for non-invasive targeting neuromodulation.
Neuromodulation, the targeted regulation of nerve activity, has emerged as a promising approach for treating various neurological and psychiatric disorders. While deep brain stimulation has shown efficacy, its invasive nature poses substantial risks, including surgical complications and high costs. In contrast, non-invasive neuromodulation techniques, particularly those utilizing magnetic fields (MFs), have gained increasing attention as safer, more accessible alternatives. Magnetothermal stimulation has emerged as an innovative method that enables precise modulation of neuronal ion channels through localized heating induced by interaction of MF with biological tissues. This review discusses the principles of MF-based neuromodulation and highlights the critical role of ion channels in synaptic transmission, and the therapeutic potential of these advanced techniques. Additionally, it highlights key challenges such as spatial targeting precision, safety considerations, and the long-term effects of magnetic exposure on brain function. The findings presente the promise of MF-based neuromodulation as a non-invasive, highly targeted therapeutic strategy for conditions such as epilepsy, movement disorders, and neurodegenerative diseases, with potential applications in chronic pain management and future clinical interventions.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.