Alex Odoom, Abdul-Halim Osman, Christian K O Dzuvor
{"title":"免疫治疗和基于疫苗的方法治疗耐药细菌感染的最新进展。","authors":"Alex Odoom, Abdul-Halim Osman, Christian K O Dzuvor","doi":"10.1021/acsinfecdis.5c00001","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance poses a grave threat to global public health. Although new antibiotics are urgently needed, most share resistance mechanisms with existing drugs, thereby necessitating the development of alternative antibacterial therapeutics. Various immunotherapeutic agents, including monoclonal antibodies, therapeutic vaccines, cellular therapies, and immunomodulators, have been developed and explored to treat drug-resistant bacterial infections. This review comprehensively summarizes recent advancements in immunotherapies and vaccine-based approaches as alternative strategies to combat drug-resistant bacterial infections. Our findings indicate that immunotherapy offers several advantages over traditional antibiotics, such as enhanced specificity, long-term effects, overcoming resistance mechanisms, broad applicability, potential for combination therapies, personalized medicine, and reduced toxicity. Also, formulation and delivery strategies, including nanoparticles, liposomes, cellular vehicles, and diverse administration routes, have been employed to improve the efficacy and targeting of these immunotherapeutic agents. In-depth evaluations of promising preclinical and clinical studies demonstrate their potential effectiveness against pathogens such as <i>Pseudomonas aeruginosa</i>, <i>Escherichia coli</i>, <i>Mycobacterium tuberculosis</i>, <i>Streptococcus pneumoniae</i>, methicillin-resistant <i>Staphylococcus aureus</i>, <i>Acinetobacter baumannii</i>, and <i>Helicobacter pylori</i>. These suggest that immunotherapy is a promising alternative to address the growing challenge of drug-resistant bacterial infections, potentially revolutionizing infection management strategies.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1366-1402"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Immunotherapeutic and Vaccine-Based Approaches for the Treatment of Drug-Resistant Bacterial Infections.\",\"authors\":\"Alex Odoom, Abdul-Halim Osman, Christian K O Dzuvor\",\"doi\":\"10.1021/acsinfecdis.5c00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance poses a grave threat to global public health. Although new antibiotics are urgently needed, most share resistance mechanisms with existing drugs, thereby necessitating the development of alternative antibacterial therapeutics. Various immunotherapeutic agents, including monoclonal antibodies, therapeutic vaccines, cellular therapies, and immunomodulators, have been developed and explored to treat drug-resistant bacterial infections. This review comprehensively summarizes recent advancements in immunotherapies and vaccine-based approaches as alternative strategies to combat drug-resistant bacterial infections. Our findings indicate that immunotherapy offers several advantages over traditional antibiotics, such as enhanced specificity, long-term effects, overcoming resistance mechanisms, broad applicability, potential for combination therapies, personalized medicine, and reduced toxicity. Also, formulation and delivery strategies, including nanoparticles, liposomes, cellular vehicles, and diverse administration routes, have been employed to improve the efficacy and targeting of these immunotherapeutic agents. In-depth evaluations of promising preclinical and clinical studies demonstrate their potential effectiveness against pathogens such as <i>Pseudomonas aeruginosa</i>, <i>Escherichia coli</i>, <i>Mycobacterium tuberculosis</i>, <i>Streptococcus pneumoniae</i>, methicillin-resistant <i>Staphylococcus aureus</i>, <i>Acinetobacter baumannii</i>, and <i>Helicobacter pylori</i>. These suggest that immunotherapy is a promising alternative to address the growing challenge of drug-resistant bacterial infections, potentially revolutionizing infection management strategies.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"1366-1402\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00001\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Recent Advances in Immunotherapeutic and Vaccine-Based Approaches for the Treatment of Drug-Resistant Bacterial Infections.
Antimicrobial resistance poses a grave threat to global public health. Although new antibiotics are urgently needed, most share resistance mechanisms with existing drugs, thereby necessitating the development of alternative antibacterial therapeutics. Various immunotherapeutic agents, including monoclonal antibodies, therapeutic vaccines, cellular therapies, and immunomodulators, have been developed and explored to treat drug-resistant bacterial infections. This review comprehensively summarizes recent advancements in immunotherapies and vaccine-based approaches as alternative strategies to combat drug-resistant bacterial infections. Our findings indicate that immunotherapy offers several advantages over traditional antibiotics, such as enhanced specificity, long-term effects, overcoming resistance mechanisms, broad applicability, potential for combination therapies, personalized medicine, and reduced toxicity. Also, formulation and delivery strategies, including nanoparticles, liposomes, cellular vehicles, and diverse administration routes, have been employed to improve the efficacy and targeting of these immunotherapeutic agents. In-depth evaluations of promising preclinical and clinical studies demonstrate their potential effectiveness against pathogens such as Pseudomonas aeruginosa, Escherichia coli, Mycobacterium tuberculosis, Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, and Helicobacter pylori. These suggest that immunotherapy is a promising alternative to address the growing challenge of drug-resistant bacterial infections, potentially revolutionizing infection management strategies.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.