抗寄生虫的三重威胁:针对寄生虫酶、质子动力和宿主细胞介导的杀伤。

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2025-06-13 Epub Date: 2025-05-06 DOI:10.1021/acsinfecdis.5c00094
Akanksha M Pandey, Satish R Malwal, Mariana Valladares-Delgado, Liesangerli Labrador-Fagúndez, Bruno G Stella, Luis José Díaz-Pérez, André Rey-Cibati, Davinder Singh, Marianna Stampolaki, Sangjin Hong, Robert B Gennis, Antonios Kolocouris, Gustavo Benaim, Eric Oldfield
{"title":"抗寄生虫的三重威胁:针对寄生虫酶、质子动力和宿主细胞介导的杀伤。","authors":"Akanksha M Pandey, Satish R Malwal, Mariana Valladares-Delgado, Liesangerli Labrador-Fagúndez, Bruno G Stella, Luis José Díaz-Pérez, André Rey-Cibati, Davinder Singh, Marianna Stampolaki, Sangjin Hong, Robert B Gennis, Antonios Kolocouris, Gustavo Benaim, Eric Oldfield","doi":"10.1021/acsinfecdis.5c00094","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the effects of the tuberculosis drug candidate SQ109 (<b>8a</b>) and of its analog MeSQ109 (<b>8b</b>) against <i>Leishmania mexicana</i> in promastigote and amastigote forms and against host cell macrophages finding potent activity (1.7 nM) for MeSQ109 against the intracellular forms, as well as low toxicity (∼61 μM) to host cells, resulting in a selectivity index of ∼36,000. We then investigated the mechanism of action of MeSQ109, finding that it targeted parasite mitochondria, collapsing the proton motive force, as well as targeting acidocalcisomes, rapidly increasing the intracellular Ca<sup>2+</sup> concentration. Using an <i>E. coli</i> inverted membrane vesicle assay, we investigated the pH gradient collapse for SQ109 and 17 analogs, finding that there was a significant correlation (on average, <i>R</i> = 0.67, <i>p</i> = 0.008) between pH gradient collapse and cell growth inhibition in <i>Trypanosoma brucei</i>, <i>T. cruzi</i>, <i>L. donovani</i>, and <i>Plasmodium falciparum</i>. We also investigated pH gradient collapse with other antileishmanial agents: azoles, antimonials, benzofurans, amphotericin B, and miltefosine. The enhanced activity against intracellular trypanosomatids is seen with <i>Leishmania</i> spp. grown in macrophages but not with <i>Trypanosoma cruzi</i> in epithelial cells and is proposed to be due in part to host-based killing, based on the recent observation that SQ109 is known to convert macrophages to a pro-inflammatory (M1) phenotype.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1539-1551"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Parasitics with a Triple Threat: Targeting Parasite Enzymes, the Proton Motive Force, and Host Cell-Mediated Killing.\",\"authors\":\"Akanksha M Pandey, Satish R Malwal, Mariana Valladares-Delgado, Liesangerli Labrador-Fagúndez, Bruno G Stella, Luis José Díaz-Pérez, André Rey-Cibati, Davinder Singh, Marianna Stampolaki, Sangjin Hong, Robert B Gennis, Antonios Kolocouris, Gustavo Benaim, Eric Oldfield\",\"doi\":\"10.1021/acsinfecdis.5c00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the effects of the tuberculosis drug candidate SQ109 (<b>8a</b>) and of its analog MeSQ109 (<b>8b</b>) against <i>Leishmania mexicana</i> in promastigote and amastigote forms and against host cell macrophages finding potent activity (1.7 nM) for MeSQ109 against the intracellular forms, as well as low toxicity (∼61 μM) to host cells, resulting in a selectivity index of ∼36,000. We then investigated the mechanism of action of MeSQ109, finding that it targeted parasite mitochondria, collapsing the proton motive force, as well as targeting acidocalcisomes, rapidly increasing the intracellular Ca<sup>2+</sup> concentration. Using an <i>E. coli</i> inverted membrane vesicle assay, we investigated the pH gradient collapse for SQ109 and 17 analogs, finding that there was a significant correlation (on average, <i>R</i> = 0.67, <i>p</i> = 0.008) between pH gradient collapse and cell growth inhibition in <i>Trypanosoma brucei</i>, <i>T. cruzi</i>, <i>L. donovani</i>, and <i>Plasmodium falciparum</i>. We also investigated pH gradient collapse with other antileishmanial agents: azoles, antimonials, benzofurans, amphotericin B, and miltefosine. The enhanced activity against intracellular trypanosomatids is seen with <i>Leishmania</i> spp. grown in macrophages but not with <i>Trypanosoma cruzi</i> in epithelial cells and is proposed to be due in part to host-based killing, based on the recent observation that SQ109 is known to convert macrophages to a pro-inflammatory (M1) phenotype.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"1539-1551\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00094\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了结核病候选药物SQ109 (8a)及其类似物MeSQ109 (8b)对promastigote和amastigote形式的墨西哥利什曼原虫和宿主细胞巨噬细胞的作用,发现MeSQ109对细胞内形式的有效活性(1.7 nM),以及对宿主细胞的低毒性(~ 61 μM),导致选择性指数为~ 36,000。我们随后研究了MeSQ109的作用机制,发现它靶向寄生虫线粒体,破坏质子动力,并靶向酸钙体,迅速增加细胞内Ca2+浓度。利用大肠杆菌倒膜囊泡法研究了SQ109及其17类似物的pH梯度崩溃,发现pH梯度崩溃与布鲁氏锥虫、克氏T.、多诺瓦氏L.和恶性疟原虫的细胞生长抑制之间存在显著相关性(平均R = 0.67, p = 0.008)。我们还研究了其他抗利什曼药物的pH梯度崩溃:唑、锑、苯并呋喃、两性霉素B和米特氟辛。在巨噬细胞中生长的利什曼原虫对细胞内锥虫的活性增强,而在上皮细胞中生长的克氏锥虫则没有增强,根据最近的观察,SQ109已知可将巨噬细胞转化为促炎(M1)表型,这可能部分归因于宿主杀伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-Parasitics with a Triple Threat: Targeting Parasite Enzymes, the Proton Motive Force, and Host Cell-Mediated Killing.

We investigated the effects of the tuberculosis drug candidate SQ109 (8a) and of its analog MeSQ109 (8b) against Leishmania mexicana in promastigote and amastigote forms and against host cell macrophages finding potent activity (1.7 nM) for MeSQ109 against the intracellular forms, as well as low toxicity (∼61 μM) to host cells, resulting in a selectivity index of ∼36,000. We then investigated the mechanism of action of MeSQ109, finding that it targeted parasite mitochondria, collapsing the proton motive force, as well as targeting acidocalcisomes, rapidly increasing the intracellular Ca2+ concentration. Using an E. coli inverted membrane vesicle assay, we investigated the pH gradient collapse for SQ109 and 17 analogs, finding that there was a significant correlation (on average, R = 0.67, p = 0.008) between pH gradient collapse and cell growth inhibition in Trypanosoma brucei, T. cruzi, L. donovani, and Plasmodium falciparum. We also investigated pH gradient collapse with other antileishmanial agents: azoles, antimonials, benzofurans, amphotericin B, and miltefosine. The enhanced activity against intracellular trypanosomatids is seen with Leishmania spp. grown in macrophages but not with Trypanosoma cruzi in epithelial cells and is proposed to be due in part to host-based killing, based on the recent observation that SQ109 is known to convert macrophages to a pro-inflammatory (M1) phenotype.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信