无缓冲器GaN-on-SiC功率晶体管的电流崩溃:麦克斯韦-瓦格纳效应和相关模型

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Alberto Cavaliere;Nicola Modolo;Carlo De Santi;Christian Koller;Clemens Ostermaier;Gaudenzio Meneghesso;Enrico Zanoni;Olof Öberg;Qin Wang;Ding Yuan Chen;Anders Lundskog;Jr-Tai Chen;Matteo Meneghini
{"title":"无缓冲器GaN-on-SiC功率晶体管的电流崩溃:麦克斯韦-瓦格纳效应和相关模型","authors":"Alberto Cavaliere;Nicola Modolo;Carlo De Santi;Christian Koller;Clemens Ostermaier;Gaudenzio Meneghesso;Enrico Zanoni;Olof Öberg;Qin Wang;Ding Yuan Chen;Anders Lundskog;Jr-Tai Chen;Matteo Meneghini","doi":"10.1109/TED.2025.3556052","DOIUrl":null,"url":null,"abstract":"Recently, the use of insulating substrates has emerged as a viable option for the fabrication of GaN power transistors exceeding 1 kV. Such structures are of interest because no doped buffer is used, so--ideally—a low dynamic <inline-formula> <tex-math>${R}_{\\text {DSON}}$ </tex-math></inline-formula> is expected. This article investigates the recoverable (and temperature dependent) current lowering induced by negative backgating in buffer-free GaN-on-SiC devices. Remarkably, we demonstrate that such an effect is not directly related to charge trapping, but to the Maxwell-Wagner effect, i.e., the charge migration at the interface between the insulating SiC substrate and the semi-insulating GaN layer. Accordingly, a model is defined and validated to simulate with great accuracy, the current decreases (and related kinetics) as a function of temperature, voltage, and time.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2252-2258"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Collapse in Buffer-Free GaN-on-SiC Power Transistors: Maxwell-Wagner Effect and Related Model\",\"authors\":\"Alberto Cavaliere;Nicola Modolo;Carlo De Santi;Christian Koller;Clemens Ostermaier;Gaudenzio Meneghesso;Enrico Zanoni;Olof Öberg;Qin Wang;Ding Yuan Chen;Anders Lundskog;Jr-Tai Chen;Matteo Meneghini\",\"doi\":\"10.1109/TED.2025.3556052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the use of insulating substrates has emerged as a viable option for the fabrication of GaN power transistors exceeding 1 kV. Such structures are of interest because no doped buffer is used, so--ideally—a low dynamic <inline-formula> <tex-math>${R}_{\\\\text {DSON}}$ </tex-math></inline-formula> is expected. This article investigates the recoverable (and temperature dependent) current lowering induced by negative backgating in buffer-free GaN-on-SiC devices. Remarkably, we demonstrate that such an effect is not directly related to charge trapping, but to the Maxwell-Wagner effect, i.e., the charge migration at the interface between the insulating SiC substrate and the semi-insulating GaN layer. Accordingly, a model is defined and validated to simulate with great accuracy, the current decreases (and related kinetics) as a function of temperature, voltage, and time.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 5\",\"pages\":\"2252-2258\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971383/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971383/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,绝缘衬底的使用已经成为制造超过1kv的GaN功率晶体管的可行选择。这种结构很有趣,因为没有使用掺杂缓冲,所以-理想情况下-期望低动态${R}_{\text {DSON}}$。本文研究了无缓冲GaN-on-SiC器件中由负反门引起的可恢复(和温度相关)电流降低。值得注意的是,我们证明了这种效应与电荷捕获没有直接关系,而是与麦克斯韦-瓦格纳效应有关,即在绝缘SiC衬底和半绝缘GaN层之间的界面处的电荷迁移。因此,定义并验证了一个模型,以非常准确地模拟,电流减小(和相关动力学)作为温度,电压和时间的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current Collapse in Buffer-Free GaN-on-SiC Power Transistors: Maxwell-Wagner Effect and Related Model
Recently, the use of insulating substrates has emerged as a viable option for the fabrication of GaN power transistors exceeding 1 kV. Such structures are of interest because no doped buffer is used, so--ideally—a low dynamic ${R}_{\text {DSON}}$ is expected. This article investigates the recoverable (and temperature dependent) current lowering induced by negative backgating in buffer-free GaN-on-SiC devices. Remarkably, we demonstrate that such an effect is not directly related to charge trapping, but to the Maxwell-Wagner effect, i.e., the charge migration at the interface between the insulating SiC substrate and the semi-insulating GaN layer. Accordingly, a model is defined and validated to simulate with great accuracy, the current decreases (and related kinetics) as a function of temperature, voltage, and time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信