三维垂直电阻开关随机存取存储器(3D-VRRAM),用于高密度、高能效的内存计算

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
D. Bridarolli;C. Zucchelli;P. Mannocci;S. Ricci;M. Farronato;G. Pedretti;Z. Sun;D. Ielmini
{"title":"三维垂直电阻开关随机存取存储器(3D-VRRAM),用于高密度、高能效的内存计算","authors":"D. Bridarolli;C. Zucchelli;P. Mannocci;S. Ricci;M. Farronato;G. Pedretti;Z. Sun;D. Ielmini","doi":"10.1109/TED.2025.3554472","DOIUrl":null,"url":null,"abstract":"Resistive random access memory (RRAM) devices offer a broad range of attractive properties for in-memory computing (IMC) applications, such as nonvolatile storage, low read current, and high scalability. IMC allows to overcome the memory bottleneck of data-intensive workloads, such as deep learning on the edge. In this context, 3-D vertical RRAM (3D-VRRAM) is a promising option to achieve high memory cell capacity with low fabrication cost. In this work, we present an HfOx-based 3D-VRRAM crossbar array (CBA) capable of IMC with precise multilevel programming. We show an extensive experimental demonstration of both matrix-vector multiplication (MVM) and inverse/pseudoinverse matrix calculation via IMC on 3D-VRRAM. To further support the parallel IMC application in real-life scenarios, the work also reports a demonstration of relatively large-size problems adopting 2D-RRAM and SRAM-based memory arrays. These results support 3D-VRRAM for high-density, energy-efficient IMC for edge computing applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2677-2684"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949642","citationCount":"0","resultStr":"{\"title\":\"3-D Vertical Resistive Switching Random Access Memory (3D-VRRAM) With Multilevel Programming for High-Density, Energy-Efficient In-Memory Computing\",\"authors\":\"D. Bridarolli;C. Zucchelli;P. Mannocci;S. Ricci;M. Farronato;G. Pedretti;Z. Sun;D. Ielmini\",\"doi\":\"10.1109/TED.2025.3554472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistive random access memory (RRAM) devices offer a broad range of attractive properties for in-memory computing (IMC) applications, such as nonvolatile storage, low read current, and high scalability. IMC allows to overcome the memory bottleneck of data-intensive workloads, such as deep learning on the edge. In this context, 3-D vertical RRAM (3D-VRRAM) is a promising option to achieve high memory cell capacity with low fabrication cost. In this work, we present an HfOx-based 3D-VRRAM crossbar array (CBA) capable of IMC with precise multilevel programming. We show an extensive experimental demonstration of both matrix-vector multiplication (MVM) and inverse/pseudoinverse matrix calculation via IMC on 3D-VRRAM. To further support the parallel IMC application in real-life scenarios, the work also reports a demonstration of relatively large-size problems adopting 2D-RRAM and SRAM-based memory arrays. These results support 3D-VRRAM for high-density, energy-efficient IMC for edge computing applications.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 5\",\"pages\":\"2677-2684\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949642\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949642/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949642/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电阻式随机存取存储器(RRAM)设备为内存计算(IMC)应用提供了广泛的有吸引力的特性,例如非易失性存储、低读取电流和高可扩展性。IMC可以克服数据密集型工作负载的内存瓶颈,例如边缘上的深度学习。在这种情况下,3d垂直RRAM (3D-VRRAM)是一种很有前途的选择,可以以低制造成本实现高存储单元容量。在这项工作中,我们提出了一种基于hfox的3D-VRRAM交叉棒阵列(CBA),能够通过精确的多级编程进行IMC。我们在3D-VRRAM上通过IMC展示了矩阵向量乘法(MVM)和逆/伪逆矩阵计算的广泛实验演示。为了进一步支持并行IMC在现实场景中的应用,该工作还报告了采用2D-RRAM和基于sram的存储阵列的相对大尺寸问题的演示。这些结果支持3D-VRRAM用于边缘计算应用的高密度、高能效IMC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-D Vertical Resistive Switching Random Access Memory (3D-VRRAM) With Multilevel Programming for High-Density, Energy-Efficient In-Memory Computing
Resistive random access memory (RRAM) devices offer a broad range of attractive properties for in-memory computing (IMC) applications, such as nonvolatile storage, low read current, and high scalability. IMC allows to overcome the memory bottleneck of data-intensive workloads, such as deep learning on the edge. In this context, 3-D vertical RRAM (3D-VRRAM) is a promising option to achieve high memory cell capacity with low fabrication cost. In this work, we present an HfOx-based 3D-VRRAM crossbar array (CBA) capable of IMC with precise multilevel programming. We show an extensive experimental demonstration of both matrix-vector multiplication (MVM) and inverse/pseudoinverse matrix calculation via IMC on 3D-VRRAM. To further support the parallel IMC application in real-life scenarios, the work also reports a demonstration of relatively large-size problems adopting 2D-RRAM and SRAM-based memory arrays. These results support 3D-VRRAM for high-density, energy-efficient IMC for edge computing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信