非均质3-D (H3D)堆叠系统中直接热扩散层键合GaN功率器件在PDN上的3-D片上集成

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jaeyong Jeong;Chan Jik Lee;Sung Joon Choi;Nahyun Rheem;Minseo Song;Yoon-Je Suh;Bong Ho Kim;Joon Pyo Kim;Joonsup Shim;Jiseon Lee;Myungsoo Park;Yumin Koh;Donghyun Kim;Sanghyeon Kim
{"title":"非均质3-D (H3D)堆叠系统中直接热扩散层键合GaN功率器件在PDN上的3-D片上集成","authors":"Jaeyong Jeong;Chan Jik Lee;Sung Joon Choi;Nahyun Rheem;Minseo Song;Yoon-Je Suh;Bong Ho Kim;Joon Pyo Kim;Joonsup Shim;Jiseon Lee;Myungsoo Park;Yumin Koh;Donghyun Kim;Sanghyeon Kim","doi":"10.1109/TED.2025.3556044","DOIUrl":null,"url":null,"abstract":"Heterogeneous 3-D (H3D) stacked systems offer numerous advantages for high-performance computing (HPC) and artificial intelligence/machine learning (AI/ML) applications. However, implementing H3D systems requires a re-designed power delivery network (PDN) for efficient power delivery in 3-D stacked systems and thermal management solutions. To develop an efficient PDN for the H3D system, a 3-D integrated on-chip power device is recommended. In this work, we demonstrate an H3D-integrated GaN power device on the PDN of a CMOS chip with direct heat-spreading layer bonding. The GaN power devices were designed to integrate both E-mode and D-mode with <inline-formula> <tex-math>${L}_{\\text {G}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$1.5~\\mu $ </tex-math></inline-formula> m and <inline-formula> <tex-math>${L}_{\\text {GD}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$15~\\mu $ </tex-math></inline-formula> m, and achieve a <inline-formula> <tex-math>${R}_{\\scriptscriptstyle{\\mathrm {on}}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$22.3~\\Omega $ </tex-math></inline-formula> mm and <inline-formula> <tex-math>${V}_{\\text {BD}}$ </tex-math></inline-formula> of 137 V. These results surpass the limitation of silicon-based power devices. In addition, we experimentally demonstrated that direct heat spreading layer bonding effectively relaxed the thermal effect of H3D-integrated GaN power devices using a thermoreflectance microscopy (TRM) system for the first time. By introducing a heat spreading layer, the thermal resistance (<inline-formula> <tex-math>${R}_{\\text {TH}}$ </tex-math></inline-formula>) of the GaN power device was reduced by 48.8% compared to GaN power devices without a heat spreading layer. These findings mark a substantial advancement in PDN technology, setting the stage for vertically integrated active PDNs that support efficient power delivery and effective thermal management in H3D stacked systems.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2654-2661"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D On-Chip Integration of GaN Power Devices on Power Delivery Network (PDN) With Direct Heat Spreading Layer Bonding for Heterogeneous 3-D (H3D) Stacked Systems\",\"authors\":\"Jaeyong Jeong;Chan Jik Lee;Sung Joon Choi;Nahyun Rheem;Minseo Song;Yoon-Je Suh;Bong Ho Kim;Joon Pyo Kim;Joonsup Shim;Jiseon Lee;Myungsoo Park;Yumin Koh;Donghyun Kim;Sanghyeon Kim\",\"doi\":\"10.1109/TED.2025.3556044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous 3-D (H3D) stacked systems offer numerous advantages for high-performance computing (HPC) and artificial intelligence/machine learning (AI/ML) applications. However, implementing H3D systems requires a re-designed power delivery network (PDN) for efficient power delivery in 3-D stacked systems and thermal management solutions. To develop an efficient PDN for the H3D system, a 3-D integrated on-chip power device is recommended. In this work, we demonstrate an H3D-integrated GaN power device on the PDN of a CMOS chip with direct heat-spreading layer bonding. The GaN power devices were designed to integrate both E-mode and D-mode with <inline-formula> <tex-math>${L}_{\\\\text {G}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$1.5~\\\\mu $ </tex-math></inline-formula> m and <inline-formula> <tex-math>${L}_{\\\\text {GD}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$15~\\\\mu $ </tex-math></inline-formula> m, and achieve a <inline-formula> <tex-math>${R}_{\\\\scriptscriptstyle{\\\\mathrm {on}}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$22.3~\\\\Omega $ </tex-math></inline-formula> mm and <inline-formula> <tex-math>${V}_{\\\\text {BD}}$ </tex-math></inline-formula> of 137 V. These results surpass the limitation of silicon-based power devices. In addition, we experimentally demonstrated that direct heat spreading layer bonding effectively relaxed the thermal effect of H3D-integrated GaN power devices using a thermoreflectance microscopy (TRM) system for the first time. By introducing a heat spreading layer, the thermal resistance (<inline-formula> <tex-math>${R}_{\\\\text {TH}}$ </tex-math></inline-formula>) of the GaN power device was reduced by 48.8% compared to GaN power devices without a heat spreading layer. These findings mark a substantial advancement in PDN technology, setting the stage for vertically integrated active PDNs that support efficient power delivery and effective thermal management in H3D stacked systems.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 5\",\"pages\":\"2654-2661\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10966048/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10966048/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

异构3-D (H3D)堆叠系统为高性能计算(HPC)和人工智能/机器学习(AI/ML)应用提供了许多优势。然而,实现H3D系统需要重新设计电力输送网络(PDN),以便在3-D堆叠系统和热管理解决方案中高效供电。为了为H3D系统开发高效的PDN,建议采用三维集成片上电源器件。在这项工作中,我们展示了一个h3d集成GaN功率器件在CMOS芯片的PDN上具有直接热传导层键合。GaN功率器件设计为e模和d模集成,${L}_{\text {G}}$为$1.5~\mu $ m, ${L}_{\text {GD}}$为$15~\mu $ m, ${R}_{\scriptscriptstyle{\mathrm {on}}}$为$22.3~\Omega $ mm, ${V}_{\text {BD}}$为137 V。这些结果超越了硅基功率器件的局限性。此外,我们首次利用热反射显微镜(TRM)系统实验证明,直接热扩散层键合有效地缓解了h3d集成GaN功率器件的热效应。通过引入散热层,GaN功率器件的热阻(${R}_{\text {TH}}$)降低了48.8% compared to GaN power devices without a heat spreading layer. These findings mark a substantial advancement in PDN technology, setting the stage for vertically integrated active PDNs that support efficient power delivery and effective thermal management in H3D stacked systems.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-D On-Chip Integration of GaN Power Devices on Power Delivery Network (PDN) With Direct Heat Spreading Layer Bonding for Heterogeneous 3-D (H3D) Stacked Systems
Heterogeneous 3-D (H3D) stacked systems offer numerous advantages for high-performance computing (HPC) and artificial intelligence/machine learning (AI/ML) applications. However, implementing H3D systems requires a re-designed power delivery network (PDN) for efficient power delivery in 3-D stacked systems and thermal management solutions. To develop an efficient PDN for the H3D system, a 3-D integrated on-chip power device is recommended. In this work, we demonstrate an H3D-integrated GaN power device on the PDN of a CMOS chip with direct heat-spreading layer bonding. The GaN power devices were designed to integrate both E-mode and D-mode with ${L}_{\text {G}}$ of $1.5~\mu $ m and ${L}_{\text {GD}}$ of $15~\mu $ m, and achieve a ${R}_{\scriptscriptstyle{\mathrm {on}}}$ of $22.3~\Omega $ mm and ${V}_{\text {BD}}$ of 137 V. These results surpass the limitation of silicon-based power devices. In addition, we experimentally demonstrated that direct heat spreading layer bonding effectively relaxed the thermal effect of H3D-integrated GaN power devices using a thermoreflectance microscopy (TRM) system for the first time. By introducing a heat spreading layer, the thermal resistance ( ${R}_{\text {TH}}$ ) of the GaN power device was reduced by 48.8% compared to GaN power devices without a heat spreading layer. These findings mark a substantial advancement in PDN technology, setting the stage for vertically integrated active PDNs that support efficient power delivery and effective thermal management in H3D stacked systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信