HFNet:基于分层RGB-D特征融合和细粒度姿态对齐的非结构化环境中的高精度机器人抓取检测

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ling Tong , Kun Qian
{"title":"HFNet:基于分层RGB-D特征融合和细粒度姿态对齐的非结构化环境中的高精度机器人抓取检测","authors":"Ling Tong ,&nbsp;Kun Qian","doi":"10.1016/j.measurement.2025.117775","DOIUrl":null,"url":null,"abstract":"<div><div>The ability of robots to accurately grasp objects in unstructured environments is critical for advancing robotic automation. Current grasp detection methods overlook the distinct semantic and spatial attributes across RGB-D feature layers in such scenarios. Additionally, using Intersection over Union (IoU) loss for pose alignment fails to adequately address variations in grasp angles and dimensions. To resolve these limitations, we propose HFNet, a novel grasp detection network integrating hierarchical RGB-D feature fusion and fine-grained pose alignment strategies to optimize grasp configurations, thereby enhancing robotic applicability in real-world unstructured environments. Specifically, we design: (1) a Relation-aware Cross-modal Feature Fusion (RCFF) module to capture mid-level features (object shapes, edges, textures); (2) a High-level Cross-modal Feature Fusion (HCFF) module to strengthen global shape and semantic relationships. A new fine-grained pose alignment loss further improves measurement precision while reducing low-quality grasps. HFNet achieves state-of-the-art accuracy on benchmark datasets (Cornell, Jacquard) and challenging datasets (CBRGD, OCID_grasp, WISDOM), with a 96.67% success rate in physical robotic experiments. The source code and experiment video are available at: <span><span><em>https://github.com/meiguiz/HFNet</em></span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117775"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HFNet: High-precision robotic grasp detection in unstructured environments using hierarchical RGB-D feature fusion and fine-grained pose alignment\",\"authors\":\"Ling Tong ,&nbsp;Kun Qian\",\"doi\":\"10.1016/j.measurement.2025.117775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ability of robots to accurately grasp objects in unstructured environments is critical for advancing robotic automation. Current grasp detection methods overlook the distinct semantic and spatial attributes across RGB-D feature layers in such scenarios. Additionally, using Intersection over Union (IoU) loss for pose alignment fails to adequately address variations in grasp angles and dimensions. To resolve these limitations, we propose HFNet, a novel grasp detection network integrating hierarchical RGB-D feature fusion and fine-grained pose alignment strategies to optimize grasp configurations, thereby enhancing robotic applicability in real-world unstructured environments. Specifically, we design: (1) a Relation-aware Cross-modal Feature Fusion (RCFF) module to capture mid-level features (object shapes, edges, textures); (2) a High-level Cross-modal Feature Fusion (HCFF) module to strengthen global shape and semantic relationships. A new fine-grained pose alignment loss further improves measurement precision while reducing low-quality grasps. HFNet achieves state-of-the-art accuracy on benchmark datasets (Cornell, Jacquard) and challenging datasets (CBRGD, OCID_grasp, WISDOM), with a 96.67% success rate in physical robotic experiments. The source code and experiment video are available at: <span><span><em>https://github.com/meiguiz/HFNet</em></span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"253 \",\"pages\":\"Article 117775\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125011340\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125011340","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机器人在非结构化环境中准确抓取物体的能力对于推进机器人自动化至关重要。在这种情况下,当前的抓取检测方法忽略了跨RGB-D特征层的不同语义和空间属性。此外,使用交联损失(IoU)进行姿势对齐不能充分解决抓取角度和尺寸的变化。为了解决这些限制,我们提出了HFNet,这是一种新型的抓取检测网络,集成了分层RGB-D特征融合和细粒度姿态对齐策略来优化抓取配置,从而增强机器人在真实非结构化环境中的适用性。具体来说,我们设计了:(1)一个关系感知的跨模态特征融合(RCFF)模块来捕获中级特征(物体形状、边缘、纹理);(2)高层次跨模态特征融合(High-level Cross-modal Feature Fusion, HCFF)模块,增强全局形状和语义关系。新的细粒度姿态对准损失进一步提高了测量精度,同时减少了低质量的抓取。HFNet在基准数据集(Cornell, Jacquard)和挑战性数据集(CBRGD, OCID_grasp, WISDOM)上达到了最先进的精度,在物理机器人实验中成功率为96.67%。源代码和实验视频可在:https://github.com/meiguiz/HFNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HFNet: High-precision robotic grasp detection in unstructured environments using hierarchical RGB-D feature fusion and fine-grained pose alignment
The ability of robots to accurately grasp objects in unstructured environments is critical for advancing robotic automation. Current grasp detection methods overlook the distinct semantic and spatial attributes across RGB-D feature layers in such scenarios. Additionally, using Intersection over Union (IoU) loss for pose alignment fails to adequately address variations in grasp angles and dimensions. To resolve these limitations, we propose HFNet, a novel grasp detection network integrating hierarchical RGB-D feature fusion and fine-grained pose alignment strategies to optimize grasp configurations, thereby enhancing robotic applicability in real-world unstructured environments. Specifically, we design: (1) a Relation-aware Cross-modal Feature Fusion (RCFF) module to capture mid-level features (object shapes, edges, textures); (2) a High-level Cross-modal Feature Fusion (HCFF) module to strengthen global shape and semantic relationships. A new fine-grained pose alignment loss further improves measurement precision while reducing low-quality grasps. HFNet achieves state-of-the-art accuracy on benchmark datasets (Cornell, Jacquard) and challenging datasets (CBRGD, OCID_grasp, WISDOM), with a 96.67% success rate in physical robotic experiments. The source code and experiment video are available at: https://github.com/meiguiz/HFNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信