{"title":"车前草(Plantago lanceolata L.)的作用体外甲烷排放的代谢产物桃叶苷、毛蕊花苷和梓醇。","authors":"Komahan Sivanandarajah,Daniel Donaghy,Peter Kemp,Soledad Navarrete,David Horne,Thiagarajah Ramilan,German Molano,David Pacheco","doi":"10.1021/acs.jafc.4c12140","DOIUrl":null,"url":null,"abstract":"Plantain (PL) contains plant secondary metabolites (PSM), such as acteoside, aucubin, and catalpol, known for their bioactive properties. While acteoside and aucubin have been linked to reducing nitrogen losses in grazed pastures, their effects on enteric methane (CH4) emissions remain unexplored. Three in vitro batch culture experiments were conducted to assess the effects of PSM on rumen fermentation, using PL pastures with varying PSM concentrations, purified PSM compounds, and/or their combinations added to ryegrass (Lolium perenne, RG), which does not contain these PSM. Aucubin addition to RG extended the time to reach halftime for gas production (GP) and CH4 by 15-20% due to its antimicrobial effects. Acteoside, alone or with aucubin, promoted propionate production, an alternative hydrogen sink, which reduced the acetate to propionate ratio, increased GP by up to 13%, and decreased CH4 proportion in gas by 5-15%. Aucubin reduced ruminal net ammonia (NH3) production by up to 46%, with a similar reduction observed when combined with acteoside. This study highlights the potential of PSM to mitigate CH4 emissions and reduce nitrogen losses from dairy cows, warranting in vivo evaluation of PSM and targeted breeding of PL pastures with increased PSM content.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"2 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Plantain (Plantago lanceolata L.) Metabolites Aucubin, Acteoside, and Catalpol on Methane Emissions In Vitro.\",\"authors\":\"Komahan Sivanandarajah,Daniel Donaghy,Peter Kemp,Soledad Navarrete,David Horne,Thiagarajah Ramilan,German Molano,David Pacheco\",\"doi\":\"10.1021/acs.jafc.4c12140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plantain (PL) contains plant secondary metabolites (PSM), such as acteoside, aucubin, and catalpol, known for their bioactive properties. While acteoside and aucubin have been linked to reducing nitrogen losses in grazed pastures, their effects on enteric methane (CH4) emissions remain unexplored. Three in vitro batch culture experiments were conducted to assess the effects of PSM on rumen fermentation, using PL pastures with varying PSM concentrations, purified PSM compounds, and/or their combinations added to ryegrass (Lolium perenne, RG), which does not contain these PSM. Aucubin addition to RG extended the time to reach halftime for gas production (GP) and CH4 by 15-20% due to its antimicrobial effects. Acteoside, alone or with aucubin, promoted propionate production, an alternative hydrogen sink, which reduced the acetate to propionate ratio, increased GP by up to 13%, and decreased CH4 proportion in gas by 5-15%. Aucubin reduced ruminal net ammonia (NH3) production by up to 46%, with a similar reduction observed when combined with acteoside. This study highlights the potential of PSM to mitigate CH4 emissions and reduce nitrogen losses from dairy cows, warranting in vivo evaluation of PSM and targeted breeding of PL pastures with increased PSM content.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c12140\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c12140","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of Plantain (Plantago lanceolata L.) Metabolites Aucubin, Acteoside, and Catalpol on Methane Emissions In Vitro.
Plantain (PL) contains plant secondary metabolites (PSM), such as acteoside, aucubin, and catalpol, known for their bioactive properties. While acteoside and aucubin have been linked to reducing nitrogen losses in grazed pastures, their effects on enteric methane (CH4) emissions remain unexplored. Three in vitro batch culture experiments were conducted to assess the effects of PSM on rumen fermentation, using PL pastures with varying PSM concentrations, purified PSM compounds, and/or their combinations added to ryegrass (Lolium perenne, RG), which does not contain these PSM. Aucubin addition to RG extended the time to reach halftime for gas production (GP) and CH4 by 15-20% due to its antimicrobial effects. Acteoside, alone or with aucubin, promoted propionate production, an alternative hydrogen sink, which reduced the acetate to propionate ratio, increased GP by up to 13%, and decreased CH4 proportion in gas by 5-15%. Aucubin reduced ruminal net ammonia (NH3) production by up to 46%, with a similar reduction observed when combined with acteoside. This study highlights the potential of PSM to mitigate CH4 emissions and reduce nitrogen losses from dairy cows, warranting in vivo evaluation of PSM and targeted breeding of PL pastures with increased PSM content.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.