预测锂离子迁移的基准机器学习模型

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Artem D. Dembitskiy, Innokentiy S. Humonen, Roman A. Eremin, Dmitry A. Aksyonov, Stanislav S. Fedotov, Semen A. Budennyy
{"title":"预测锂离子迁移的基准机器学习模型","authors":"Artem D. Dembitskiy, Innokentiy S. Humonen, Roman A. Eremin, Dmitry A. Aksyonov, Stanislav S. Fedotov, Semen A. Budennyy","doi":"10.1038/s41524-025-01571-z","DOIUrl":null,"url":null,"abstract":"<p>The development of fast ionic conductors to improve the performance of electrochemical devices relies on expensive high-throughput (HT) density functional theory (DFT) calculations of transport properties. Machine learning (ML) can accelerate HT workflows but requires high-quality data to ensure accurate predictions from trained models. In this study, we introduce the LiTraj dataset, which comprises 13,000 percolation and 122,000 migration barriers, and 1700 migration trajectories, calculated for Li-ion in diverse crystal structures using empirical force fields and DFT, respectively. With LiTraj, we demonstrate that classical ML models and graph neural networks (GNNs) for structure-to-property prediction of percolation and migration barriers can distinguish between “fast” and “poor” ionic conductors. Furthermore, we evaluate the capability of GNN-based universal ML interatomic potentials (uMLIPs) to identify optimal Li-ion migration trajectories. Fine-tuned uMLIPs achieve near-DFT accuracy in predicting migration barriers, significantly accelerating HT screenings of new ionic conductors.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"3 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking machine learning models for predicting lithium ion migration\",\"authors\":\"Artem D. Dembitskiy, Innokentiy S. Humonen, Roman A. Eremin, Dmitry A. Aksyonov, Stanislav S. Fedotov, Semen A. Budennyy\",\"doi\":\"10.1038/s41524-025-01571-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of fast ionic conductors to improve the performance of electrochemical devices relies on expensive high-throughput (HT) density functional theory (DFT) calculations of transport properties. Machine learning (ML) can accelerate HT workflows but requires high-quality data to ensure accurate predictions from trained models. In this study, we introduce the LiTraj dataset, which comprises 13,000 percolation and 122,000 migration barriers, and 1700 migration trajectories, calculated for Li-ion in diverse crystal structures using empirical force fields and DFT, respectively. With LiTraj, we demonstrate that classical ML models and graph neural networks (GNNs) for structure-to-property prediction of percolation and migration barriers can distinguish between “fast” and “poor” ionic conductors. Furthermore, we evaluate the capability of GNN-based universal ML interatomic potentials (uMLIPs) to identify optimal Li-ion migration trajectories. Fine-tuned uMLIPs achieve near-DFT accuracy in predicting migration barriers, significantly accelerating HT screenings of new ionic conductors.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01571-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01571-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

快速离子导体的发展,以提高电化学器件的性能依赖于昂贵的高通量(HT)密度泛函理论(DFT)的输运性质计算。机器学习(ML)可以加速HT工作流程,但需要高质量的数据来确保训练模型的准确预测。在这项研究中,我们引入了LiTraj数据集,其中包括13000个渗透和122000个迁移屏障,以及1700个迁移轨迹,分别使用经验力场和DFT计算了不同晶体结构中的锂离子。通过LiTraj,我们证明了用于渗透和迁移屏障结构-性质预测的经典ML模型和图神经网络(gnn)可以区分“快速”和“差”离子导体。此外,我们评估了基于gnn的通用ML原子间电位(uMLIPs)识别最佳锂离子迁移轨迹的能力。微调后的uMLIPs在预测迁移屏障方面达到了接近dft的精度,显著加快了新离子导体的高温筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmarking machine learning models for predicting lithium ion migration

Benchmarking machine learning models for predicting lithium ion migration

The development of fast ionic conductors to improve the performance of electrochemical devices relies on expensive high-throughput (HT) density functional theory (DFT) calculations of transport properties. Machine learning (ML) can accelerate HT workflows but requires high-quality data to ensure accurate predictions from trained models. In this study, we introduce the LiTraj dataset, which comprises 13,000 percolation and 122,000 migration barriers, and 1700 migration trajectories, calculated for Li-ion in diverse crystal structures using empirical force fields and DFT, respectively. With LiTraj, we demonstrate that classical ML models and graph neural networks (GNNs) for structure-to-property prediction of percolation and migration barriers can distinguish between “fast” and “poor” ionic conductors. Furthermore, we evaluate the capability of GNN-based universal ML interatomic potentials (uMLIPs) to identify optimal Li-ion migration trajectories. Fine-tuned uMLIPs achieve near-DFT accuracy in predicting migration barriers, significantly accelerating HT screenings of new ionic conductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信