{"title":"用于预测回归的时变模型系统","authors":"Deshui Yu , Yayi Yan","doi":"10.1016/j.jempfin.2025.101622","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a system of time-varying models for predictive regressions, where a time-varying autoregressive (TV-AR) process is introduced to model the dynamics of the predictors and a linear control function approach is used to improve the estimation efficiency. We employ a profile likelihood estimation method to estimate both constant and time-varying coefficients and propose a hypothesis test to examine the parameter stability. We establish the asymptotic properties of the proposed estimators and test statistics accordingly. Monte Carlo simulations show that the proposed methods work well in finite samples. Empirically, the TV-AR process effectively approximates the time-series behavior of a broad set of potential predictors. Furthermore, we reject the stability assumption of predictive models for more than half of these predictors. Finally, the linear projection method not only improves estimator efficiency but also enhances out-of-sample forecasting performance, leading to significant utility gains in forecasting experiments.</div></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"82 ","pages":"Article 101622"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A system of time-varying models for predictive regressions\",\"authors\":\"Deshui Yu , Yayi Yan\",\"doi\":\"10.1016/j.jempfin.2025.101622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a system of time-varying models for predictive regressions, where a time-varying autoregressive (TV-AR) process is introduced to model the dynamics of the predictors and a linear control function approach is used to improve the estimation efficiency. We employ a profile likelihood estimation method to estimate both constant and time-varying coefficients and propose a hypothesis test to examine the parameter stability. We establish the asymptotic properties of the proposed estimators and test statistics accordingly. Monte Carlo simulations show that the proposed methods work well in finite samples. Empirically, the TV-AR process effectively approximates the time-series behavior of a broad set of potential predictors. Furthermore, we reject the stability assumption of predictive models for more than half of these predictors. Finally, the linear projection method not only improves estimator efficiency but also enhances out-of-sample forecasting performance, leading to significant utility gains in forecasting experiments.</div></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"82 \",\"pages\":\"Article 101622\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539825000441\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539825000441","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
A system of time-varying models for predictive regressions
This paper proposes a system of time-varying models for predictive regressions, where a time-varying autoregressive (TV-AR) process is introduced to model the dynamics of the predictors and a linear control function approach is used to improve the estimation efficiency. We employ a profile likelihood estimation method to estimate both constant and time-varying coefficients and propose a hypothesis test to examine the parameter stability. We establish the asymptotic properties of the proposed estimators and test statistics accordingly. Monte Carlo simulations show that the proposed methods work well in finite samples. Empirically, the TV-AR process effectively approximates the time-series behavior of a broad set of potential predictors. Furthermore, we reject the stability assumption of predictive models for more than half of these predictors. Finally, the linear projection method not only improves estimator efficiency but also enhances out-of-sample forecasting performance, leading to significant utility gains in forecasting experiments.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.