Wenjie Shang, Jiahang Zhou, J. P. Panda, Zhihao Xu, Yi Liu, Pan Du, Jian-Xun Wang, Tengfei Luo
{"title":"JAX-BTE:声子玻尔兹曼输运方程的gpu加速可微求解器","authors":"Wenjie Shang, Jiahang Zhou, J. P. Panda, Zhihao Xu, Yi Liu, Pan Du, Jian-Xun Wang, Tengfei Luo","doi":"10.1038/s41524-025-01635-0","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces JAX-BTE, a GPU-accelerated, differentiable solver for the phonon Boltzmann Transport Equation (BTE) based on differentiable programming. JAX-BTE enables accurate, efficient and differentiable multiscale thermal modeling by leveraging high-performance GPU computing and automatic differentiation. The solver efficiently addresses the high-dimensional and complex integro-differential nature of the phonon BTE, facilitating both forward simulations and data-augmented inverse simulations through end-to-end optimization. Validation is performed across a range of 1D to 3D simulations, including complex FinFET structures, in both forward and inverse settings, demonstrating excellent performance and reliability. JAX-BTE significantly outperforms state-of-the-art BTE solvers in forward simulations and uniquely enables inverse simulations, making it a powerful tool for multiscale thermal analysis and design for semiconductor devices.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"50 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JAX-BTE: a GPU-accelerated differentiable solver for phonon Boltzmann transport equations\",\"authors\":\"Wenjie Shang, Jiahang Zhou, J. P. Panda, Zhihao Xu, Yi Liu, Pan Du, Jian-Xun Wang, Tengfei Luo\",\"doi\":\"10.1038/s41524-025-01635-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces JAX-BTE, a GPU-accelerated, differentiable solver for the phonon Boltzmann Transport Equation (BTE) based on differentiable programming. JAX-BTE enables accurate, efficient and differentiable multiscale thermal modeling by leveraging high-performance GPU computing and automatic differentiation. The solver efficiently addresses the high-dimensional and complex integro-differential nature of the phonon BTE, facilitating both forward simulations and data-augmented inverse simulations through end-to-end optimization. Validation is performed across a range of 1D to 3D simulations, including complex FinFET structures, in both forward and inverse settings, demonstrating excellent performance and reliability. JAX-BTE significantly outperforms state-of-the-art BTE solvers in forward simulations and uniquely enables inverse simulations, making it a powerful tool for multiscale thermal analysis and design for semiconductor devices.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01635-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01635-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
JAX-BTE: a GPU-accelerated differentiable solver for phonon Boltzmann transport equations
This paper introduces JAX-BTE, a GPU-accelerated, differentiable solver for the phonon Boltzmann Transport Equation (BTE) based on differentiable programming. JAX-BTE enables accurate, efficient and differentiable multiscale thermal modeling by leveraging high-performance GPU computing and automatic differentiation. The solver efficiently addresses the high-dimensional and complex integro-differential nature of the phonon BTE, facilitating both forward simulations and data-augmented inverse simulations through end-to-end optimization. Validation is performed across a range of 1D to 3D simulations, including complex FinFET structures, in both forward and inverse settings, demonstrating excellent performance and reliability. JAX-BTE significantly outperforms state-of-the-art BTE solvers in forward simulations and uniquely enables inverse simulations, making it a powerful tool for multiscale thermal analysis and design for semiconductor devices.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.