研究形貌和结构修饰对TiOPc光电性能的影响以改进光探测

IF 1.5 4区 材料科学 Q3 Chemistry
Yanshu Shi, Mengke Guo, Yiqian Wang, Xuekun Wang, Jile Wang, Xiaoyun Qin, Yumin Song, Tingting Guo
{"title":"研究形貌和结构修饰对TiOPc光电性能的影响以改进光探测","authors":"Yanshu Shi,&nbsp;Mengke Guo,&nbsp;Yiqian Wang,&nbsp;Xuekun Wang,&nbsp;Jile Wang,&nbsp;Xiaoyun Qin,&nbsp;Yumin Song,&nbsp;Tingting Guo","doi":"10.1002/crat.202400247","DOIUrl":null,"url":null,"abstract":"<p>The unique morphology and structure significantly enhance the performance of photoelectric detection. Herein, titanyl phthalocyanine (TiOPc) coarse crystal and microspheres are obtained by a simple physical vapor deposition (PVD) method designed to produce TiOPc structures that undergo significant changes in the crystal structure. The photoelectric experimental results show that the photocurrent of TiOPc coarse crystal and microspheres increases with the increase of voltage and exhibits better stability compared to the raw materials. Under a bias voltage of 10 V, the photoresponsivity of microspheres reaches the maximum, which is 77 times that of raw materials. Under different monochromatic lights, the raw materials are most sensitive to red light (850 nm), with a photocurrent of 1.3556 × 10<sup>−6</sup> mA, but the coarse crystal/microspheres are most sensitive to blue light (455 nm) with photocurrents of 1.281 × 10<sup>−5</sup> mA/2.609 × 10<sup>−5</sup> mA, respectively. It is worth mentioning that although the photocurrent and responsivity of coarse crystal are slightly lower than those of microspheres, the response speed is faster, with a rise/fall time is 271 and 194 ms, respectively. The good photoelectric properties indicate the potential research value of TiOPc coarse crystal and microspheres in the field of photoelectric detection.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Influence of Morphologies and Structural Modifications on the Photoelectric Properties of TiOPc for Improved Photodetection\",\"authors\":\"Yanshu Shi,&nbsp;Mengke Guo,&nbsp;Yiqian Wang,&nbsp;Xuekun Wang,&nbsp;Jile Wang,&nbsp;Xiaoyun Qin,&nbsp;Yumin Song,&nbsp;Tingting Guo\",\"doi\":\"10.1002/crat.202400247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The unique morphology and structure significantly enhance the performance of photoelectric detection. Herein, titanyl phthalocyanine (TiOPc) coarse crystal and microspheres are obtained by a simple physical vapor deposition (PVD) method designed to produce TiOPc structures that undergo significant changes in the crystal structure. The photoelectric experimental results show that the photocurrent of TiOPc coarse crystal and microspheres increases with the increase of voltage and exhibits better stability compared to the raw materials. Under a bias voltage of 10 V, the photoresponsivity of microspheres reaches the maximum, which is 77 times that of raw materials. Under different monochromatic lights, the raw materials are most sensitive to red light (850 nm), with a photocurrent of 1.3556 × 10<sup>−6</sup> mA, but the coarse crystal/microspheres are most sensitive to blue light (455 nm) with photocurrents of 1.281 × 10<sup>−5</sup> mA/2.609 × 10<sup>−5</sup> mA, respectively. It is worth mentioning that although the photocurrent and responsivity of coarse crystal are slightly lower than those of microspheres, the response speed is faster, with a rise/fall time is 271 and 194 ms, respectively. The good photoelectric properties indicate the potential research value of TiOPc coarse crystal and microspheres in the field of photoelectric detection.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400247\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400247","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

独特的形态和结构显著提高了光电探测性能。本文通过简单的物理气相沉积(PVD)方法获得了钛基酞菁(TiOPc)粗晶和微球,旨在产生晶体结构发生显著变化的TiOPc结构。光电实验结果表明,TiOPc粗晶和微球的光电流随电压的升高而增大,并表现出比原料更好的稳定性。在10v的偏置电压下,微球的光响应性达到最大值,是原料的77倍。在不同的单色光下,原料对红光(850 nm)最敏感,光电流为1.3556 × 10−6 mA,而粗晶/微球对蓝光(455 nm)最敏感,光电流分别为1.281 × 10−5 mA/2.609 × 10−5 mA。值得一提的是,虽然粗晶的光电流和响应率略低于微球,但响应速度更快,上升/下降时间分别为271 ms和194 ms。良好的光电性能表明TiOPc粗晶和微球在光电探测领域具有潜在的研究价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Influence of Morphologies and Structural Modifications on the Photoelectric Properties of TiOPc for Improved Photodetection

Investigating the Influence of Morphologies and Structural Modifications on the Photoelectric Properties of TiOPc for Improved Photodetection

The unique morphology and structure significantly enhance the performance of photoelectric detection. Herein, titanyl phthalocyanine (TiOPc) coarse crystal and microspheres are obtained by a simple physical vapor deposition (PVD) method designed to produce TiOPc structures that undergo significant changes in the crystal structure. The photoelectric experimental results show that the photocurrent of TiOPc coarse crystal and microspheres increases with the increase of voltage and exhibits better stability compared to the raw materials. Under a bias voltage of 10 V, the photoresponsivity of microspheres reaches the maximum, which is 77 times that of raw materials. Under different monochromatic lights, the raw materials are most sensitive to red light (850 nm), with a photocurrent of 1.3556 × 10−6 mA, but the coarse crystal/microspheres are most sensitive to blue light (455 nm) with photocurrents of 1.281 × 10−5 mA/2.609 × 10−5 mA, respectively. It is worth mentioning that although the photocurrent and responsivity of coarse crystal are slightly lower than those of microspheres, the response speed is faster, with a rise/fall time is 271 and 194 ms, respectively. The good photoelectric properties indicate the potential research value of TiOPc coarse crystal and microspheres in the field of photoelectric detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信