面向SpMV计算的敏捷软硬件协同设计

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Minghao Tian;Yue Liang;Bowen Liu;Dajiang Liu
{"title":"面向SpMV计算的敏捷软硬件协同设计","authors":"Minghao Tian;Yue Liang;Bowen Liu;Dajiang Liu","doi":"10.1109/TC.2025.3547136","DOIUrl":null,"url":null,"abstract":"Sparse Matrix-Vector multiplication (SpMV) is a widely used kernel in scientific or engineering applications and it is commonly implemented in FPGAs for acceleration. Existing works on FPGA usually pre-process the sparse matrix for data compression from the software perspective, and then design a unified architecture from the hardware perspective. However, as different SpMV kernels expose different levels of data parallelism after software processing, a unified architecture may not efficiently tap the underlying parallelism exposed in a specific kernel, leading to poor bandwidth utilization (BU) or poor resource utilization. To this end, this paper proposes an agile software and hardware co-design framework, CoSpMV, that employs design space exploration on both software and hardware for a specific kernel. Specifically, by providing a scalable compressed data format and a highly pipelined hardware template, CoSpMV can select the most suitable software and hardware configurations for different kernels and generate the accelerator instantly. The experimental results show that CoSpMV can achieve 3.91<inline-formula><tex-math>$\\times$</tex-math></inline-formula> speedup on GFLOPs, and 1.31<inline-formula><tex-math>$\\times$</tex-math></inline-formula> speedup on BU compared to the state-of-the-art work.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 6","pages":"1921-1935"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoSpMV: Towards Agile Software and Hardware Co-Design for SpMV Computation\",\"authors\":\"Minghao Tian;Yue Liang;Bowen Liu;Dajiang Liu\",\"doi\":\"10.1109/TC.2025.3547136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Matrix-Vector multiplication (SpMV) is a widely used kernel in scientific or engineering applications and it is commonly implemented in FPGAs for acceleration. Existing works on FPGA usually pre-process the sparse matrix for data compression from the software perspective, and then design a unified architecture from the hardware perspective. However, as different SpMV kernels expose different levels of data parallelism after software processing, a unified architecture may not efficiently tap the underlying parallelism exposed in a specific kernel, leading to poor bandwidth utilization (BU) or poor resource utilization. To this end, this paper proposes an agile software and hardware co-design framework, CoSpMV, that employs design space exploration on both software and hardware for a specific kernel. Specifically, by providing a scalable compressed data format and a highly pipelined hardware template, CoSpMV can select the most suitable software and hardware configurations for different kernels and generate the accelerator instantly. The experimental results show that CoSpMV can achieve 3.91<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula> speedup on GFLOPs, and 1.31<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula> speedup on BU compared to the state-of-the-art work.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 6\",\"pages\":\"1921-1935\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908575/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908575/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

稀疏矩阵向量乘法(SpMV)是科学或工程应用中广泛使用的核函数,通常在fpga中实现用于加速。现有的FPGA工作通常是从软件的角度对稀疏矩阵进行预处理进行数据压缩,然后从硬件的角度设计统一的架构。然而,由于不同的SpMV内核在软件处理后公开了不同级别的数据并行性,统一架构可能无法有效地利用特定内核中公开的底层并行性,从而导致带宽利用率(BU)或资源利用率低下。为此,本文提出了一个灵活的软硬件协同设计框架CoSpMV,该框架针对特定内核在软件和硬件上进行设计空间探索。具体来说,通过提供可扩展的压缩数据格式和高度流水线化的硬件模板,CoSpMV可以为不同的内核选择最合适的软件和硬件配置,并立即生成加速器。实验结果表明,与现有方法相比,CoSpMV在gflop上可以实现3.91美元的加速,在BU上可以实现1.31美元的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoSpMV: Towards Agile Software and Hardware Co-Design for SpMV Computation
Sparse Matrix-Vector multiplication (SpMV) is a widely used kernel in scientific or engineering applications and it is commonly implemented in FPGAs for acceleration. Existing works on FPGA usually pre-process the sparse matrix for data compression from the software perspective, and then design a unified architecture from the hardware perspective. However, as different SpMV kernels expose different levels of data parallelism after software processing, a unified architecture may not efficiently tap the underlying parallelism exposed in a specific kernel, leading to poor bandwidth utilization (BU) or poor resource utilization. To this end, this paper proposes an agile software and hardware co-design framework, CoSpMV, that employs design space exploration on both software and hardware for a specific kernel. Specifically, by providing a scalable compressed data format and a highly pipelined hardware template, CoSpMV can select the most suitable software and hardware configurations for different kernels and generate the accelerator instantly. The experimental results show that CoSpMV can achieve 3.91$\times$ speedup on GFLOPs, and 1.31$\times$ speedup on BU compared to the state-of-the-art work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信