具有优异微波介电性能和导热性的室温致密Al2O3-H3BO3陶瓷

IF 9.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhan Zeng , Jin Cheng , Xinwei Xu , Hongye Wang , Yani Lu , Liang Sun , Naichao Chen , Xiaoyu Li , Boshen Zhang , Hong Wang
{"title":"具有优异微波介电性能和导热性的室温致密Al2O3-H3BO3陶瓷","authors":"Zhan Zeng ,&nbsp;Jin Cheng ,&nbsp;Xinwei Xu ,&nbsp;Hongye Wang ,&nbsp;Yani Lu ,&nbsp;Liang Sun ,&nbsp;Naichao Chen ,&nbsp;Xiaoyu Li ,&nbsp;Boshen Zhang ,&nbsp;Hong Wang","doi":"10.1016/j.jmat.2025.101069","DOIUrl":null,"url":null,"abstract":"<div><div>As electronic devices become increasingly miniaturized and demand greater integration, traditional packaging technologies face substantial challenges in meeting the needs for high-frequency performance and system reliability. Ceramic materials, known for their excellent dielectric properties and thermal stability, are promising candidates for advanced packaging applications. However, conventional high-temperature densification processes, which often exceed 1000 °C, restrict their compatibility with temperature-sensitive components in modern electronic systems. To overcome this limitation, we propose a novel approach to densify Al<sub>2</sub>O<sub>3</sub><img>H<sub>3</sub>BO<sub>3</sub> ceramic at room temperature under low uniaxial stress. It is found that a H<sub>3</sub>BO<sub>3</sub> facilitates plastic deformation in the medium of deionized water, enhancing the densification of Al<sub>2</sub>O<sub>3</sub><img>H<sub>3</sub>BO<sub>3</sub> ceramics even at minimal uniaxial stress. The resulting material exhibits a high relative density of over 96% and possesses excellent microwave dielectric properties (relative permittivity <span><math><msub><mi>ε</mi><mi>r</mi></msub></math></span>: 2.84–5.37; <span><math><mrow><mi>Q</mi><mo>×</mo><mi>f</mi></mrow></math></span> values: 12,924–69,000 GHz; resonant frequency <span><math><msub><mi>τ</mi><mi>f</mi></msub></math></span> values: −156.94 10<sup>−6</sup> °C<sup>−1</sup> to −73.42 10<sup>−6</sup> °C<sup>−1</sup>) and thermal conductivity (<span><math><mrow><mi>λ</mi></mrow></math></span> values: 1.96–5.96 W·m<sup>−1</sup>·K<sup>−1</sup>). After co-firing with a silicon wafer, the ceramic maintains its structural integrity, with no observable atomic diffusion at the ceramic-silicon interface, rendering it a potential candidate for advanced packaging and integration technologies.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 6","pages":"Article 101069"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature densified Al2O3-H3BO3 ceramics with excellent microwave dielectric properties and thermal conductivity for chip packaging\",\"authors\":\"Zhan Zeng ,&nbsp;Jin Cheng ,&nbsp;Xinwei Xu ,&nbsp;Hongye Wang ,&nbsp;Yani Lu ,&nbsp;Liang Sun ,&nbsp;Naichao Chen ,&nbsp;Xiaoyu Li ,&nbsp;Boshen Zhang ,&nbsp;Hong Wang\",\"doi\":\"10.1016/j.jmat.2025.101069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As electronic devices become increasingly miniaturized and demand greater integration, traditional packaging technologies face substantial challenges in meeting the needs for high-frequency performance and system reliability. Ceramic materials, known for their excellent dielectric properties and thermal stability, are promising candidates for advanced packaging applications. However, conventional high-temperature densification processes, which often exceed 1000 °C, restrict their compatibility with temperature-sensitive components in modern electronic systems. To overcome this limitation, we propose a novel approach to densify Al<sub>2</sub>O<sub>3</sub><img>H<sub>3</sub>BO<sub>3</sub> ceramic at room temperature under low uniaxial stress. It is found that a H<sub>3</sub>BO<sub>3</sub> facilitates plastic deformation in the medium of deionized water, enhancing the densification of Al<sub>2</sub>O<sub>3</sub><img>H<sub>3</sub>BO<sub>3</sub> ceramics even at minimal uniaxial stress. The resulting material exhibits a high relative density of over 96% and possesses excellent microwave dielectric properties (relative permittivity <span><math><msub><mi>ε</mi><mi>r</mi></msub></math></span>: 2.84–5.37; <span><math><mrow><mi>Q</mi><mo>×</mo><mi>f</mi></mrow></math></span> values: 12,924–69,000 GHz; resonant frequency <span><math><msub><mi>τ</mi><mi>f</mi></msub></math></span> values: −156.94 10<sup>−6</sup> °C<sup>−1</sup> to −73.42 10<sup>−6</sup> °C<sup>−1</sup>) and thermal conductivity (<span><math><mrow><mi>λ</mi></mrow></math></span> values: 1.96–5.96 W·m<sup>−1</sup>·K<sup>−1</sup>). After co-firing with a silicon wafer, the ceramic maintains its structural integrity, with no observable atomic diffusion at the ceramic-silicon interface, rendering it a potential candidate for advanced packaging and integration technologies.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 6\",\"pages\":\"Article 101069\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847825000590\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847825000590","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着电子器件的小型化和集成度的提高,传统的封装技术在满足高频性能和系统可靠性方面面临着巨大的挑战。陶瓷材料以其优异的介电性能和热稳定性而闻名,是先进封装应用的有希望的候选者。然而,传统的高温致密化工艺通常超过1000°C,限制了它们与现代电子系统中温度敏感元件的兼容性。为了克服这一限制,我们提出了一种在室温下低单轴应力下致密化Al2O3-H3BO3陶瓷的新方法。发现H3BO3在去离子水介质中有利于塑性变形,即使在最小的单轴应力下也能增强Al2O3-H3BO3陶瓷的致密性。所得材料的相对密度高达96%以上,具有优异的微波介电性能(相对介电常数:2.84 ~ 5.37;取值范围:12924 - 69,000 GHz;谐振频率值:−156.94 10-6·°C-1 ~−73.42 10-6·°C-1)和导热系数(值:1.96 ~ 5.96 W·m-1·K-1)。在与硅片共烧后,陶瓷保持其结构完整性,在陶瓷-硅界面没有观察到原子扩散,使其成为先进封装和集成技术的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room-temperature densified Al2O3-H3BO3 ceramics with excellent microwave dielectric properties and thermal conductivity for chip packaging

Room-temperature densified Al2O3-H3BO3 ceramics with excellent microwave dielectric properties and thermal conductivity for chip packaging

Room-temperature densified Al2O3-H3BO3 ceramics with excellent microwave dielectric properties and thermal conductivity for chip packaging
As electronic devices become increasingly miniaturized and demand greater integration, traditional packaging technologies face substantial challenges in meeting the needs for high-frequency performance and system reliability. Ceramic materials, known for their excellent dielectric properties and thermal stability, are promising candidates for advanced packaging applications. However, conventional high-temperature densification processes, which often exceed 1000 °C, restrict their compatibility with temperature-sensitive components in modern electronic systems. To overcome this limitation, we propose a novel approach to densify Al2O3H3BO3 ceramic at room temperature under low uniaxial stress. It is found that a H3BO3 facilitates plastic deformation in the medium of deionized water, enhancing the densification of Al2O3H3BO3 ceramics even at minimal uniaxial stress. The resulting material exhibits a high relative density of over 96% and possesses excellent microwave dielectric properties (relative permittivity εr: 2.84–5.37; Q×f values: 12,924–69,000 GHz; resonant frequency τf values: −156.94 10−6 °C−1 to −73.42 10−6 °C−1) and thermal conductivity (λ values: 1.96–5.96 W·m−1·K−1). After co-firing with a silicon wafer, the ceramic maintains its structural integrity, with no observable atomic diffusion at the ceramic-silicon interface, rendering it a potential candidate for advanced packaging and integration technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信