{"title":"发芽对某些豆类抗营养成分、淀粉和蛋白质体外消化率、酚类物质和抗氧化剂含量及生物可及性的影响","authors":"Neşe Yılmaz Tuncel, Havva Polat Kaya, Fatma Betül Sakarya, Ali Emre Andaç, Fatma Korkmaz, Gulay Ozkan, Necati Barış Tuncel, Esra Capanoglu","doi":"10.1002/fsn3.70103","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study was to investigate the impact of 24- and 48-h germination on antinutrient levels (phytic acid, trypsin inhibitors, saponins, and tannins), in vitro starch and protein digestibility, and the content and bioaccessibility of phenolic compounds and antioxidants in chickpeas, peas, mung beans, and lentils. Germination resulted in reductions of phytic acid by up to 75.65% and trypsin inhibitor activity by up to 39.20% in the pulses studied. In contrast, saponin levels showed a significant increase, rising nearly threefold with germination, while mung beans exhibited an exceptional 27-fold increase. Tannins decreased in lentils (2.6-fold) and mung beans (5.8-fold), increased in peas (1.6-fold), and remained unchanged in chickpeas following germination. In vitro protein digestibility generally increased with germination, reaching up to 4.40%, except in peas, where a decline was observed. Germination significantly enhanced total digestible starch content while reducing resistant starch in all pulses except chickpeas. Mung beans exhibited the highest total phenolic content and antioxidant capacity, followed by lentils. Although germination significantly elevated total phenolic content in all pulses, this increase did not always align with antioxidant capacity outcomes. Additionally, germination led to a decline in the bioaccessibility of phenolics. However, the amount of phenolic compounds progressively increased during gastric and intestinal digestion, with intestinal digestion further enhancing the total antioxidant capacity of the pulses.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"13 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70103","citationCount":"0","resultStr":"{\"title\":\"The Effect of Germination on Antinutritional Components, In Vitro Starch and Protein Digestibility, Content, and Bioaccessibility of Phenolics and Antioxidants of Some Pulses\",\"authors\":\"Neşe Yılmaz Tuncel, Havva Polat Kaya, Fatma Betül Sakarya, Ali Emre Andaç, Fatma Korkmaz, Gulay Ozkan, Necati Barış Tuncel, Esra Capanoglu\",\"doi\":\"10.1002/fsn3.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this study was to investigate the impact of 24- and 48-h germination on antinutrient levels (phytic acid, trypsin inhibitors, saponins, and tannins), in vitro starch and protein digestibility, and the content and bioaccessibility of phenolic compounds and antioxidants in chickpeas, peas, mung beans, and lentils. Germination resulted in reductions of phytic acid by up to 75.65% and trypsin inhibitor activity by up to 39.20% in the pulses studied. In contrast, saponin levels showed a significant increase, rising nearly threefold with germination, while mung beans exhibited an exceptional 27-fold increase. Tannins decreased in lentils (2.6-fold) and mung beans (5.8-fold), increased in peas (1.6-fold), and remained unchanged in chickpeas following germination. In vitro protein digestibility generally increased with germination, reaching up to 4.40%, except in peas, where a decline was observed. Germination significantly enhanced total digestible starch content while reducing resistant starch in all pulses except chickpeas. Mung beans exhibited the highest total phenolic content and antioxidant capacity, followed by lentils. Although germination significantly elevated total phenolic content in all pulses, this increase did not always align with antioxidant capacity outcomes. Additionally, germination led to a decline in the bioaccessibility of phenolics. However, the amount of phenolic compounds progressively increased during gastric and intestinal digestion, with intestinal digestion further enhancing the total antioxidant capacity of the pulses.</p>\",\"PeriodicalId\":12418,\"journal\":{\"name\":\"Food Science & Nutrition\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science & Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70103\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70103","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Effect of Germination on Antinutritional Components, In Vitro Starch and Protein Digestibility, Content, and Bioaccessibility of Phenolics and Antioxidants of Some Pulses
The objective of this study was to investigate the impact of 24- and 48-h germination on antinutrient levels (phytic acid, trypsin inhibitors, saponins, and tannins), in vitro starch and protein digestibility, and the content and bioaccessibility of phenolic compounds and antioxidants in chickpeas, peas, mung beans, and lentils. Germination resulted in reductions of phytic acid by up to 75.65% and trypsin inhibitor activity by up to 39.20% in the pulses studied. In contrast, saponin levels showed a significant increase, rising nearly threefold with germination, while mung beans exhibited an exceptional 27-fold increase. Tannins decreased in lentils (2.6-fold) and mung beans (5.8-fold), increased in peas (1.6-fold), and remained unchanged in chickpeas following germination. In vitro protein digestibility generally increased with germination, reaching up to 4.40%, except in peas, where a decline was observed. Germination significantly enhanced total digestible starch content while reducing resistant starch in all pulses except chickpeas. Mung beans exhibited the highest total phenolic content and antioxidant capacity, followed by lentils. Although germination significantly elevated total phenolic content in all pulses, this increase did not always align with antioxidant capacity outcomes. Additionally, germination led to a decline in the bioaccessibility of phenolics. However, the amount of phenolic compounds progressively increased during gastric and intestinal digestion, with intestinal digestion further enhancing the total antioxidant capacity of the pulses.
期刊介绍:
Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.