表面冷却优化元素分布和改进kesterite太阳能电池†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shanheng Zhao, Lijie Zhao, Shunxiang Yu, Mengyang Wang, Mingtao Han, Lingling Wang, Qianqian Wang, Junjie Fu, Chaoliang Zhao, Sixin Wu and Zhi Zheng
{"title":"表面冷却优化元素分布和改进kesterite太阳能电池†","authors":"Shanheng Zhao, Lijie Zhao, Shunxiang Yu, Mengyang Wang, Mingtao Han, Lingling Wang, Qianqian Wang, Junjie Fu, Chaoliang Zhao, Sixin Wu and Zhi Zheng","doi":"10.1039/D4TC05473C","DOIUrl":null,"url":null,"abstract":"<p >One effective approach to achieve high-quality Cu<small><sub>2</sub></small>ZnSn(S,Se)<small><sub>4</sub></small> (CZTSSe) absorbers and efficient CZTSSe solar cells involves adjusting the pre-annealing temperature to regulate the primary and secondary phases within the micro-regions of the CZTSSe absorber. Herein, we inhibit the formation of Cu<small><sub>2</sub></small>ZnSnS<small><sub>4</sub></small> (CZTS) from binary sulfides of the precursor through a surface cooling strategy at the pre-annealing stage, including ZnS, SnS<small><sub>2</sub></small>, and SnS, which restricts the diffusion of Sn in the absorber with an optimized elemental ratio of (Cu + Ag)/(Zn + Sn) set to 0.8. Meanwhile, optimized precursors exhibit a copper-poor and zinc-rich gradient, resulting in an absorber with high crystalline quality. In comparison to the traditional approach, the CZTSSe solar cell prepared by pre-annealing at 365 °C on the precursor surface displays reduced bulk defect density and increased carrier lifetime. Utilizing the superficial cooling technique on the precursors, this research optimizes the distribution of metal elements in the CZTSSe absorber and achieves a device efficiency of 12.15%. This study offers new insights into the mechanisms influencing the modulation of the microregional phases of the CZTSSe absorber, which can enhance photovoltaic performance.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 18","pages":" 8978-8989"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface cooling for optimized elemental distribution and improved kesterite solar cells†\",\"authors\":\"Shanheng Zhao, Lijie Zhao, Shunxiang Yu, Mengyang Wang, Mingtao Han, Lingling Wang, Qianqian Wang, Junjie Fu, Chaoliang Zhao, Sixin Wu and Zhi Zheng\",\"doi\":\"10.1039/D4TC05473C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >One effective approach to achieve high-quality Cu<small><sub>2</sub></small>ZnSn(S,Se)<small><sub>4</sub></small> (CZTSSe) absorbers and efficient CZTSSe solar cells involves adjusting the pre-annealing temperature to regulate the primary and secondary phases within the micro-regions of the CZTSSe absorber. Herein, we inhibit the formation of Cu<small><sub>2</sub></small>ZnSnS<small><sub>4</sub></small> (CZTS) from binary sulfides of the precursor through a surface cooling strategy at the pre-annealing stage, including ZnS, SnS<small><sub>2</sub></small>, and SnS, which restricts the diffusion of Sn in the absorber with an optimized elemental ratio of (Cu + Ag)/(Zn + Sn) set to 0.8. Meanwhile, optimized precursors exhibit a copper-poor and zinc-rich gradient, resulting in an absorber with high crystalline quality. In comparison to the traditional approach, the CZTSSe solar cell prepared by pre-annealing at 365 °C on the precursor surface displays reduced bulk defect density and increased carrier lifetime. Utilizing the superficial cooling technique on the precursors, this research optimizes the distribution of metal elements in the CZTSSe absorber and achieves a device efficiency of 12.15%. This study offers new insights into the mechanisms influencing the modulation of the microregional phases of the CZTSSe absorber, which can enhance photovoltaic performance.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 18\",\"pages\":\" 8978-8989\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05473c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05473c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了获得高质量的Cu2ZnSn(S,Se)4 (CZTSSe)吸收体和高效的CZTSSe太阳能电池,一种有效的方法是通过调整预退火温度来调节CZTSSe吸收体微区域内的初级相和次级相。在预退火阶段,我们通过表面冷却策略抑制前驱体的二元硫化物(包括ZnS、SnS2和SnS)形成Cu2ZnSnS4 (CZTS),这限制了Sn在吸收器中的扩散,优化元素比为(Cu + Ag)/(Zn + Sn)为0.8。同时,优化后的前驱体表现出贫铜富锌的梯度,从而获得了具有高结晶质量的吸收剂。与传统方法相比,在前驱体表面365°C预退火制备的CZTSSe太阳能电池显示体积缺陷密度降低,载流子寿命增加。本研究利用前驱体表面冷却技术,优化了CZTSSe吸收器中金属元素的分布,器件效率达到12.15%。该研究对影响CZTSSe吸收器微区域相位调制的机制提供了新的见解,从而提高了光伏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface cooling for optimized elemental distribution and improved kesterite solar cells†

Surface cooling for optimized elemental distribution and improved kesterite solar cells†

One effective approach to achieve high-quality Cu2ZnSn(S,Se)4 (CZTSSe) absorbers and efficient CZTSSe solar cells involves adjusting the pre-annealing temperature to regulate the primary and secondary phases within the micro-regions of the CZTSSe absorber. Herein, we inhibit the formation of Cu2ZnSnS4 (CZTS) from binary sulfides of the precursor through a surface cooling strategy at the pre-annealing stage, including ZnS, SnS2, and SnS, which restricts the diffusion of Sn in the absorber with an optimized elemental ratio of (Cu + Ag)/(Zn + Sn) set to 0.8. Meanwhile, optimized precursors exhibit a copper-poor and zinc-rich gradient, resulting in an absorber with high crystalline quality. In comparison to the traditional approach, the CZTSSe solar cell prepared by pre-annealing at 365 °C on the precursor surface displays reduced bulk defect density and increased carrier lifetime. Utilizing the superficial cooling technique on the precursors, this research optimizes the distribution of metal elements in the CZTSSe absorber and achieves a device efficiency of 12.15%. This study offers new insights into the mechanisms influencing the modulation of the microregional phases of the CZTSSe absorber, which can enhance photovoltaic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信