{"title":"5nm SRAM最小供电电压从300k降至10k的研究","authors":"Hafeez Raza;Shivendra Singh Parihar;Yogesh Singh Chauhan;Hussam Amrouch;Avinash Lahgere","doi":"10.1109/JXCDC.2025.3560215","DOIUrl":null,"url":null,"abstract":"In this article, we present a comprehensive study of the impact of cryogenic temperatures on the minimum operating voltage (<inline-formula> <tex-math>$V_{\\min }$ </tex-math></inline-formula>) of 5-nm Fin Field-Effect Transistors (FinFETs)-based Static Random Access Memory (SRAM) cells. To perform the SRAM <inline-formula> <tex-math>$V_{\\min }$ </tex-math></inline-formula> evaluation, we have measured the FinFETs fabricated using a commercial 5-nm technology down to 10 K. Next, we calibrate a cryogenic-aware BSIM-CMG FinFET compact model, which we use with our SRAM evaluation framework. For a comprehensive study, we evaluate three industry-standard SRAM cell types: 1) high-density cell (HDC); 2) low-voltage cell (LVC); and 3) high-performance cell (HPC). We analyze the impact of the threshold voltage (<inline-formula> <tex-math>$V_{\\text {TH}}$ </tex-math></inline-formula>) and gate length (<inline-formula> <tex-math>$L_{G}$ </tex-math></inline-formula>)-only variations on the SRAM noise resilience. At cryogenic temperature, minimum read voltage (<inline-formula> <tex-math>$V_{\\min ,R}$ </tex-math></inline-formula>) =0.15 V (62% decrease from room temperature) and minimum write voltage (<inline-formula> <tex-math>$V_{\\min ,W}$ </tex-math></inline-formula>) =0.45 V are achieved without read-/write-assist circuits. We also highlight that the LVC provides the best tradeoff for <inline-formula> <tex-math>$V_{\\min }$ </tex-math></inline-formula> between read and write operations for low-power cryogenic applications.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"42-50"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963695","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Minimum Supply Voltage of 5-nm SRAM From 300 K Down to 10 K\",\"authors\":\"Hafeez Raza;Shivendra Singh Parihar;Yogesh Singh Chauhan;Hussam Amrouch;Avinash Lahgere\",\"doi\":\"10.1109/JXCDC.2025.3560215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a comprehensive study of the impact of cryogenic temperatures on the minimum operating voltage (<inline-formula> <tex-math>$V_{\\\\min }$ </tex-math></inline-formula>) of 5-nm Fin Field-Effect Transistors (FinFETs)-based Static Random Access Memory (SRAM) cells. To perform the SRAM <inline-formula> <tex-math>$V_{\\\\min }$ </tex-math></inline-formula> evaluation, we have measured the FinFETs fabricated using a commercial 5-nm technology down to 10 K. Next, we calibrate a cryogenic-aware BSIM-CMG FinFET compact model, which we use with our SRAM evaluation framework. For a comprehensive study, we evaluate three industry-standard SRAM cell types: 1) high-density cell (HDC); 2) low-voltage cell (LVC); and 3) high-performance cell (HPC). We analyze the impact of the threshold voltage (<inline-formula> <tex-math>$V_{\\\\text {TH}}$ </tex-math></inline-formula>) and gate length (<inline-formula> <tex-math>$L_{G}$ </tex-math></inline-formula>)-only variations on the SRAM noise resilience. At cryogenic temperature, minimum read voltage (<inline-formula> <tex-math>$V_{\\\\min ,R}$ </tex-math></inline-formula>) =0.15 V (62% decrease from room temperature) and minimum write voltage (<inline-formula> <tex-math>$V_{\\\\min ,W}$ </tex-math></inline-formula>) =0.45 V are achieved without read-/write-assist circuits. We also highlight that the LVC provides the best tradeoff for <inline-formula> <tex-math>$V_{\\\\min }$ </tex-math></inline-formula> between read and write operations for low-power cryogenic applications.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":\"11 \",\"pages\":\"42-50\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963695\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963695/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963695/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An Investigation of Minimum Supply Voltage of 5-nm SRAM From 300 K Down to 10 K
In this article, we present a comprehensive study of the impact of cryogenic temperatures on the minimum operating voltage ($V_{\min }$ ) of 5-nm Fin Field-Effect Transistors (FinFETs)-based Static Random Access Memory (SRAM) cells. To perform the SRAM $V_{\min }$ evaluation, we have measured the FinFETs fabricated using a commercial 5-nm technology down to 10 K. Next, we calibrate a cryogenic-aware BSIM-CMG FinFET compact model, which we use with our SRAM evaluation framework. For a comprehensive study, we evaluate three industry-standard SRAM cell types: 1) high-density cell (HDC); 2) low-voltage cell (LVC); and 3) high-performance cell (HPC). We analyze the impact of the threshold voltage ($V_{\text {TH}}$ ) and gate length ($L_{G}$ )-only variations on the SRAM noise resilience. At cryogenic temperature, minimum read voltage ($V_{\min ,R}$ ) =0.15 V (62% decrease from room temperature) and minimum write voltage ($V_{\min ,W}$ ) =0.45 V are achieved without read-/write-assist circuits. We also highlight that the LVC provides the best tradeoff for $V_{\min }$ between read and write operations for low-power cryogenic applications.