Qian Tao , Yiming Wang , Engang Tian , Hongfeng Tao , Hongtian Chen , Yiyang Chen
{"title":"基于自适应参数辨识模型的汽车锂离子电池内部短路故障诊断","authors":"Qian Tao , Yiming Wang , Engang Tian , Hongfeng Tao , Hongtian Chen , Yiyang Chen","doi":"10.1016/j.measurement.2025.117664","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a model-based diagnostic method for internal short circuit (ISC) faults in lithium-ion batteries. This method utilizes a second-order equivalent circuit model (ECM) combined with a recursive least squares method with an adaptive forgetting factor for online parameter identification, with initial parameters optimized by a particle swarm optimization (PSO) algorithm. An extended Kalman filter (EKF) is then employed for state estimation to generate residuals, which are analyzed using the refined cumulative sum (CUSUM) statistical method to detect and diagnose ISC faults. Experimental results show that this method effectively identifies ISC faults in automotive power batteries under various initial state of charge (SOC) levels and fault-free conditions. At 100% initial SOC, fault detection times are 104 seconds for a <span><math><mrow><mtext>15</mtext><mi>Ω</mi></mrow></math></span> fault, 77 seconds for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault, and 27 seconds for a <span><math><mrow><mtext>1</mtext><mi>Ω</mi></mrow></math></span> fault; at 90% initial SOC, detection for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault takes 97 seconds, demonstrating high accuracy and robustness.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117664"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal short circuit fault diagnosis for automotive lithium-ion batteries using an adaptive parameter identification model\",\"authors\":\"Qian Tao , Yiming Wang , Engang Tian , Hongfeng Tao , Hongtian Chen , Yiyang Chen\",\"doi\":\"10.1016/j.measurement.2025.117664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper develops a model-based diagnostic method for internal short circuit (ISC) faults in lithium-ion batteries. This method utilizes a second-order equivalent circuit model (ECM) combined with a recursive least squares method with an adaptive forgetting factor for online parameter identification, with initial parameters optimized by a particle swarm optimization (PSO) algorithm. An extended Kalman filter (EKF) is then employed for state estimation to generate residuals, which are analyzed using the refined cumulative sum (CUSUM) statistical method to detect and diagnose ISC faults. Experimental results show that this method effectively identifies ISC faults in automotive power batteries under various initial state of charge (SOC) levels and fault-free conditions. At 100% initial SOC, fault detection times are 104 seconds for a <span><math><mrow><mtext>15</mtext><mi>Ω</mi></mrow></math></span> fault, 77 seconds for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault, and 27 seconds for a <span><math><mrow><mtext>1</mtext><mi>Ω</mi></mrow></math></span> fault; at 90% initial SOC, detection for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault takes 97 seconds, demonstrating high accuracy and robustness.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"253 \",\"pages\":\"Article 117664\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125010231\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125010231","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Internal short circuit fault diagnosis for automotive lithium-ion batteries using an adaptive parameter identification model
This paper develops a model-based diagnostic method for internal short circuit (ISC) faults in lithium-ion batteries. This method utilizes a second-order equivalent circuit model (ECM) combined with a recursive least squares method with an adaptive forgetting factor for online parameter identification, with initial parameters optimized by a particle swarm optimization (PSO) algorithm. An extended Kalman filter (EKF) is then employed for state estimation to generate residuals, which are analyzed using the refined cumulative sum (CUSUM) statistical method to detect and diagnose ISC faults. Experimental results show that this method effectively identifies ISC faults in automotive power batteries under various initial state of charge (SOC) levels and fault-free conditions. At 100% initial SOC, fault detection times are 104 seconds for a fault, 77 seconds for a fault, and 27 seconds for a fault; at 90% initial SOC, detection for a fault takes 97 seconds, demonstrating high accuracy and robustness.
期刊介绍:
Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.