基于自适应参数辨识模型的汽车锂离子电池内部短路故障诊断

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Qian Tao , Yiming Wang , Engang Tian , Hongfeng Tao , Hongtian Chen , Yiyang Chen
{"title":"基于自适应参数辨识模型的汽车锂离子电池内部短路故障诊断","authors":"Qian Tao ,&nbsp;Yiming Wang ,&nbsp;Engang Tian ,&nbsp;Hongfeng Tao ,&nbsp;Hongtian Chen ,&nbsp;Yiyang Chen","doi":"10.1016/j.measurement.2025.117664","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a model-based diagnostic method for internal short circuit (ISC) faults in lithium-ion batteries. This method utilizes a second-order equivalent circuit model (ECM) combined with a recursive least squares method with an adaptive forgetting factor for online parameter identification, with initial parameters optimized by a particle swarm optimization (PSO) algorithm. An extended Kalman filter (EKF) is then employed for state estimation to generate residuals, which are analyzed using the refined cumulative sum (CUSUM) statistical method to detect and diagnose ISC faults. Experimental results show that this method effectively identifies ISC faults in automotive power batteries under various initial state of charge (SOC) levels and fault-free conditions. At 100% initial SOC, fault detection times are 104 seconds for a <span><math><mrow><mtext>15</mtext><mi>Ω</mi></mrow></math></span> fault, 77 seconds for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault, and 27 seconds for a <span><math><mrow><mtext>1</mtext><mi>Ω</mi></mrow></math></span> fault; at 90% initial SOC, detection for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault takes 97 seconds, demonstrating high accuracy and robustness.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117664"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal short circuit fault diagnosis for automotive lithium-ion batteries using an adaptive parameter identification model\",\"authors\":\"Qian Tao ,&nbsp;Yiming Wang ,&nbsp;Engang Tian ,&nbsp;Hongfeng Tao ,&nbsp;Hongtian Chen ,&nbsp;Yiyang Chen\",\"doi\":\"10.1016/j.measurement.2025.117664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper develops a model-based diagnostic method for internal short circuit (ISC) faults in lithium-ion batteries. This method utilizes a second-order equivalent circuit model (ECM) combined with a recursive least squares method with an adaptive forgetting factor for online parameter identification, with initial parameters optimized by a particle swarm optimization (PSO) algorithm. An extended Kalman filter (EKF) is then employed for state estimation to generate residuals, which are analyzed using the refined cumulative sum (CUSUM) statistical method to detect and diagnose ISC faults. Experimental results show that this method effectively identifies ISC faults in automotive power batteries under various initial state of charge (SOC) levels and fault-free conditions. At 100% initial SOC, fault detection times are 104 seconds for a <span><math><mrow><mtext>15</mtext><mi>Ω</mi></mrow></math></span> fault, 77 seconds for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault, and 27 seconds for a <span><math><mrow><mtext>1</mtext><mi>Ω</mi></mrow></math></span> fault; at 90% initial SOC, detection for a <span><math><mrow><mtext>10</mtext><mi>Ω</mi></mrow></math></span> fault takes 97 seconds, demonstrating high accuracy and robustness.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"253 \",\"pages\":\"Article 117664\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125010231\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125010231","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于模型的锂离子电池内部短路故障诊断方法。该方法利用二阶等效电路模型(ECM)和带自适应遗忘因子的递推最小二乘法进行在线参数辨识,并采用粒子群优化算法(PSO)优化初始参数。然后利用扩展卡尔曼滤波(EKF)进行状态估计生成残差,利用精细化累积和(CUSUM)统计方法对残差进行分析,从而检测和诊断ISC故障。实验结果表明,该方法能有效识别汽车动力电池在不同初始荷电状态和无故障状态下的ISC故障。在100%初始SOC状态下,15Ω故障检测时间为104秒,10Ω故障检测时间为77秒,1Ω故障检测时间为27秒;在90%的初始SOC下,10Ω故障检测需要97秒,显示出高精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal short circuit fault diagnosis for automotive lithium-ion batteries using an adaptive parameter identification model
This paper develops a model-based diagnostic method for internal short circuit (ISC) faults in lithium-ion batteries. This method utilizes a second-order equivalent circuit model (ECM) combined with a recursive least squares method with an adaptive forgetting factor for online parameter identification, with initial parameters optimized by a particle swarm optimization (PSO) algorithm. An extended Kalman filter (EKF) is then employed for state estimation to generate residuals, which are analyzed using the refined cumulative sum (CUSUM) statistical method to detect and diagnose ISC faults. Experimental results show that this method effectively identifies ISC faults in automotive power batteries under various initial state of charge (SOC) levels and fault-free conditions. At 100% initial SOC, fault detection times are 104 seconds for a 15Ω fault, 77 seconds for a 10Ω fault, and 27 seconds for a 1Ω fault; at 90% initial SOC, detection for a 10Ω fault takes 97 seconds, demonstrating high accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信