VFDR气流调节系统高精度建模的混合机制与数据驱动方法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zongyu Zhang, Huan Wang, Meng Tang, Jie Zhang, Xinhan Hu
{"title":"VFDR气流调节系统高精度建模的混合机制与数据驱动方法","authors":"Zongyu Zhang, Huan Wang, Meng Tang, Jie Zhang, Xinhan Hu","doi":"10.1007/s40747-025-01899-5","DOIUrl":null,"url":null,"abstract":"<p>The variable flow ducted rocket (VFDR) poses significant challenges for high-precision modeling due to its complex nonlinear dynamics, harsh operational conditions, and integration of multiple physical fields. To address this challenge, this paper introduces a hybrid mechanism and data-driven modeling approach. Initially, the parameter perturbation method was employed to elucidate the interdependencies between system parameters and the VFDR's dynamic and steady-state responses. Entropy weight method (EWM) and technique for order preference by similarity to ideal solution (TOPSIS) were utilized for ranking the compensation parameters of the dynamic-state and steady-state models of the VFDR. Additionally, the throat area of the regulation valve was chosen as a compensatory parameter for the steady-state model. A data-driven residual compensation model was developed using the nonlinear autoregressive neural networks with external inputs (NARX) algorithm to enhance the steady-state mechanistic VFDR model, addressing its time-varying and high uncertainty characteristics. To mitigate dynamic response errors in the mechanistic model, a compensation strategy integrating error and similarity evolution with extreme learning machine (ELM) was implemented to generate compensation value. Simulation and ground experiment results validate the efficacy of the proposed algorithm, the experimental results indicate that, after compensation using the proposed strategy, the maximum error in a single test is reduced by 24.19%, and the average error is decreased by 17.81%.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"205 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid mechanism and data driven approach for high-precision modeling of gas flow regulation systems of VFDR\",\"authors\":\"Zongyu Zhang, Huan Wang, Meng Tang, Jie Zhang, Xinhan Hu\",\"doi\":\"10.1007/s40747-025-01899-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The variable flow ducted rocket (VFDR) poses significant challenges for high-precision modeling due to its complex nonlinear dynamics, harsh operational conditions, and integration of multiple physical fields. To address this challenge, this paper introduces a hybrid mechanism and data-driven modeling approach. Initially, the parameter perturbation method was employed to elucidate the interdependencies between system parameters and the VFDR's dynamic and steady-state responses. Entropy weight method (EWM) and technique for order preference by similarity to ideal solution (TOPSIS) were utilized for ranking the compensation parameters of the dynamic-state and steady-state models of the VFDR. Additionally, the throat area of the regulation valve was chosen as a compensatory parameter for the steady-state model. A data-driven residual compensation model was developed using the nonlinear autoregressive neural networks with external inputs (NARX) algorithm to enhance the steady-state mechanistic VFDR model, addressing its time-varying and high uncertainty characteristics. To mitigate dynamic response errors in the mechanistic model, a compensation strategy integrating error and similarity evolution with extreme learning machine (ELM) was implemented to generate compensation value. Simulation and ground experiment results validate the efficacy of the proposed algorithm, the experimental results indicate that, after compensation using the proposed strategy, the maximum error in a single test is reduced by 24.19%, and the average error is decreased by 17.81%.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-025-01899-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01899-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

变流导管火箭(VFDR)由于其复杂的非线性动力学、苛刻的工作条件和多物理场的集成,对高精度建模提出了重大挑战。为了应对这一挑战,本文引入了一种混合机制和数据驱动的建模方法。首先,采用参数摄动方法来阐明系统参数与VFDR动态和稳态响应之间的相互依赖关系。利用熵权法(EWM)和理想解相似性排序优先法(TOPSIS)对VFDR动态和稳态模型的补偿参数进行排序。此外,还选择调节阀喉道面积作为稳态模型的补偿参数。针对稳态机械VFDR模型时变和高不确定性的特点,采用非线性自回归神经网络(NARX)算法,建立了数据驱动的残差补偿模型。为了减轻机械模型中的动态响应误差,采用误差与相似度进化相结合的补偿策略,结合极限学习机(ELM)生成补偿值。仿真和地面实验结果验证了该算法的有效性,实验结果表明,采用该策略进行补偿后,单次测试的最大误差减小了24.19%,平均误差减小了17.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid mechanism and data driven approach for high-precision modeling of gas flow regulation systems of VFDR

The variable flow ducted rocket (VFDR) poses significant challenges for high-precision modeling due to its complex nonlinear dynamics, harsh operational conditions, and integration of multiple physical fields. To address this challenge, this paper introduces a hybrid mechanism and data-driven modeling approach. Initially, the parameter perturbation method was employed to elucidate the interdependencies between system parameters and the VFDR's dynamic and steady-state responses. Entropy weight method (EWM) and technique for order preference by similarity to ideal solution (TOPSIS) were utilized for ranking the compensation parameters of the dynamic-state and steady-state models of the VFDR. Additionally, the throat area of the regulation valve was chosen as a compensatory parameter for the steady-state model. A data-driven residual compensation model was developed using the nonlinear autoregressive neural networks with external inputs (NARX) algorithm to enhance the steady-state mechanistic VFDR model, addressing its time-varying and high uncertainty characteristics. To mitigate dynamic response errors in the mechanistic model, a compensation strategy integrating error and similarity evolution with extreme learning machine (ELM) was implemented to generate compensation value. Simulation and ground experiment results validate the efficacy of the proposed algorithm, the experimental results indicate that, after compensation using the proposed strategy, the maximum error in a single test is reduced by 24.19%, and the average error is decreased by 17.81%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信