高级无监督学习:多视图聚类技术的全面概述

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abdelmalik Moujahid, Fadi Dornaika
{"title":"高级无监督学习:多视图聚类技术的全面概述","authors":"Abdelmalik Moujahid,&nbsp;Fadi Dornaika","doi":"10.1007/s10462-025-11240-8","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning techniques face numerous challenges to achieve optimal performance. These include computational constraints, the limitations of single-view learning algorithms and the complexity of processing large datasets from different domains, sources or views. In this context, multi-view clustering (MVC), a class of unsupervised multi-view learning, emerges as a powerful approach to overcome these challenges. MVC compensates for the shortcomings of single-view methods and provides a richer data representation and effective solutions for a variety of unsupervised learning tasks. In contrast to traditional single-view approaches, the semantically rich nature of multi-view data increases its practical utility despite its inherent complexity. This survey makes a threefold contribution: (1) a systematic categorization of multi-view clustering methods into well-defined groups, including co-training, co-regularization, subspace, deep learning, kernel-based, anchor-based, and graph-based strategies; (2) an in-depth analysis of their respective strengths, weaknesses, and practical challenges, such as scalability and incomplete data; and (3) a forward-looking discussion of emerging trends, interdisciplinary applications, and future directions in MVC research. This study represents an extensive workload, encompassing the review of over 140 foundational and recent publications, the development of comparative insights on integration strategies such as early fusion, late fusion, and joint learning, and the structured investigation of practical use cases in the areas of healthcare, multimedia, and social network analysis. By integrating these efforts, this work aims to fill existing gaps in MVC research and provide actionable insights for the advancement of the field.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11240-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Advanced unsupervised learning: a comprehensive overview of multi-view clustering techniques\",\"authors\":\"Abdelmalik Moujahid,&nbsp;Fadi Dornaika\",\"doi\":\"10.1007/s10462-025-11240-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning techniques face numerous challenges to achieve optimal performance. These include computational constraints, the limitations of single-view learning algorithms and the complexity of processing large datasets from different domains, sources or views. In this context, multi-view clustering (MVC), a class of unsupervised multi-view learning, emerges as a powerful approach to overcome these challenges. MVC compensates for the shortcomings of single-view methods and provides a richer data representation and effective solutions for a variety of unsupervised learning tasks. In contrast to traditional single-view approaches, the semantically rich nature of multi-view data increases its practical utility despite its inherent complexity. This survey makes a threefold contribution: (1) a systematic categorization of multi-view clustering methods into well-defined groups, including co-training, co-regularization, subspace, deep learning, kernel-based, anchor-based, and graph-based strategies; (2) an in-depth analysis of their respective strengths, weaknesses, and practical challenges, such as scalability and incomplete data; and (3) a forward-looking discussion of emerging trends, interdisciplinary applications, and future directions in MVC research. This study represents an extensive workload, encompassing the review of over 140 foundational and recent publications, the development of comparative insights on integration strategies such as early fusion, late fusion, and joint learning, and the structured investigation of practical use cases in the areas of healthcare, multimedia, and social network analysis. By integrating these efforts, this work aims to fill existing gaps in MVC research and provide actionable insights for the advancement of the field.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 8\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11240-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11240-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11240-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习技术在实现最佳性能方面面临着许多挑战。这些问题包括计算约束、单视图学习算法的局限性以及处理来自不同领域、来源或视图的大型数据集的复杂性。在这种背景下,多视图聚类(MVC)作为一种无监督的多视图学习,作为克服这些挑战的一种强有力的方法而出现。MVC弥补了单视图方法的不足,为各种无监督学习任务提供了更丰富的数据表示和有效的解决方案。与传统的单视图方法相比,尽管多视图数据具有固有的复杂性,但其语义丰富的特性增加了其实用性。本研究在以下三个方面做出了贡献:(1)将多视图聚类方法系统地分类为定义良好的组,包括共同训练、共同正则化、子空间、深度学习、基于核、基于锚点和基于图的策略;(2)深入分析各自的优势、劣势和现实挑战,如可扩展性和数据不完整等;(3)前瞻性讨论MVC研究的新兴趋势、跨学科应用和未来方向。这项研究工作量很大,包括对140多种基础和最新出版物的回顾,对集成策略(如早期融合、晚期融合和联合学习)的比较见解的发展,以及对医疗保健、多媒体和社会网络分析领域的实际用例的结构化调查。通过整合这些努力,这项工作旨在填补MVC研究中的现有空白,并为该领域的进步提供可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced unsupervised learning: a comprehensive overview of multi-view clustering techniques

Machine learning techniques face numerous challenges to achieve optimal performance. These include computational constraints, the limitations of single-view learning algorithms and the complexity of processing large datasets from different domains, sources or views. In this context, multi-view clustering (MVC), a class of unsupervised multi-view learning, emerges as a powerful approach to overcome these challenges. MVC compensates for the shortcomings of single-view methods and provides a richer data representation and effective solutions for a variety of unsupervised learning tasks. In contrast to traditional single-view approaches, the semantically rich nature of multi-view data increases its practical utility despite its inherent complexity. This survey makes a threefold contribution: (1) a systematic categorization of multi-view clustering methods into well-defined groups, including co-training, co-regularization, subspace, deep learning, kernel-based, anchor-based, and graph-based strategies; (2) an in-depth analysis of their respective strengths, weaknesses, and practical challenges, such as scalability and incomplete data; and (3) a forward-looking discussion of emerging trends, interdisciplinary applications, and future directions in MVC research. This study represents an extensive workload, encompassing the review of over 140 foundational and recent publications, the development of comparative insights on integration strategies such as early fusion, late fusion, and joint learning, and the structured investigation of practical use cases in the areas of healthcare, multimedia, and social network analysis. By integrating these efforts, this work aims to fill existing gaps in MVC research and provide actionable insights for the advancement of the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信