微生物诱导的炎症介导了西方饮食对海马体依赖记忆的影响

IF 3.4 3区 医学 Q2 NUTRITION & DIETETICS
Eden Crain , Dulce M. Minaya , Claire B. de La Serre
{"title":"微生物诱导的炎症介导了西方饮食对海马体依赖记忆的影响","authors":"Eden Crain ,&nbsp;Dulce M. Minaya ,&nbsp;Claire B. de La Serre","doi":"10.1016/j.nutres.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity is associated with impaired hippocampal-dependent memory, but the mechanisms driving this pathology are not fully understood. Western diets (WD) contribute to obesity, and previous reviews have described a role for WD in impaired hippocampal-dependent memory. However, there is need for a more detailed description of the pathways by which WD may impair memory. The short vs long-term effect of specific dietary components on brain structure and functions as well as the precise mechanism and molecular pathways involved are still not fully understood. This review focuses on the mechanisms and effects of gut microbiota-driven neuroinflammation. WD leads to changes and imbalance in bacterial taxa abundances that are deleterious to the host health (gut dysbiosis) and studies in rodent models show these changes are sufficient to impair hippocampal-dependent memory. Here, we discuss a variety of proposed mechanisms linking microbiota composition to hippocampal function, with a focus on neuroinflammation. Gut microbiota impacts gastrointestinal barrier function, leading to increased circulating proinflammatory bacterial products, increased blood-brain barrier permeability, and neuroinflammation.</div></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"138 ","pages":"Pages 89-106"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory\",\"authors\":\"Eden Crain ,&nbsp;Dulce M. Minaya ,&nbsp;Claire B. de La Serre\",\"doi\":\"10.1016/j.nutres.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Obesity is associated with impaired hippocampal-dependent memory, but the mechanisms driving this pathology are not fully understood. Western diets (WD) contribute to obesity, and previous reviews have described a role for WD in impaired hippocampal-dependent memory. However, there is need for a more detailed description of the pathways by which WD may impair memory. The short vs long-term effect of specific dietary components on brain structure and functions as well as the precise mechanism and molecular pathways involved are still not fully understood. This review focuses on the mechanisms and effects of gut microbiota-driven neuroinflammation. WD leads to changes and imbalance in bacterial taxa abundances that are deleterious to the host health (gut dysbiosis) and studies in rodent models show these changes are sufficient to impair hippocampal-dependent memory. Here, we discuss a variety of proposed mechanisms linking microbiota composition to hippocampal function, with a focus on neuroinflammation. Gut microbiota impacts gastrointestinal barrier function, leading to increased circulating proinflammatory bacterial products, increased blood-brain barrier permeability, and neuroinflammation.</div></div>\",\"PeriodicalId\":19245,\"journal\":{\"name\":\"Nutrition Research\",\"volume\":\"138 \",\"pages\":\"Pages 89-106\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S027153172500048X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027153172500048X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

肥胖与海马体依赖性记忆受损有关,但导致这种病理的机制尚不完全清楚。西方饮食(WD)导致肥胖,以前的评论已经描述了WD在海马依赖性记忆受损中的作用。然而,有必要对WD可能损害记忆的途径进行更详细的描述。特定饮食成分对大脑结构和功能的短期和长期影响以及所涉及的确切机制和分子途径尚不完全清楚。本文综述了肠道微生物群驱动的神经炎症的机制和作用。WD导致细菌类群丰度的变化和不平衡,对宿主健康有害(肠道生态失调),啮齿动物模型的研究表明,这些变化足以损害海马依赖的记忆。在这里,我们讨论了将微生物群组成与海马功能联系起来的各种拟议机制,重点是神经炎症。肠道菌群影响胃肠道屏障功能,导致循环促炎细菌产物增加,血脑屏障通透性增加和神经炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory

Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory
Obesity is associated with impaired hippocampal-dependent memory, but the mechanisms driving this pathology are not fully understood. Western diets (WD) contribute to obesity, and previous reviews have described a role for WD in impaired hippocampal-dependent memory. However, there is need for a more detailed description of the pathways by which WD may impair memory. The short vs long-term effect of specific dietary components on brain structure and functions as well as the precise mechanism and molecular pathways involved are still not fully understood. This review focuses on the mechanisms and effects of gut microbiota-driven neuroinflammation. WD leads to changes and imbalance in bacterial taxa abundances that are deleterious to the host health (gut dysbiosis) and studies in rodent models show these changes are sufficient to impair hippocampal-dependent memory. Here, we discuss a variety of proposed mechanisms linking microbiota composition to hippocampal function, with a focus on neuroinflammation. Gut microbiota impacts gastrointestinal barrier function, leading to increased circulating proinflammatory bacterial products, increased blood-brain barrier permeability, and neuroinflammation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nutrition Research
Nutrition Research 医学-营养学
CiteScore
7.60
自引率
2.20%
发文量
107
审稿时长
58 days
期刊介绍: Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease. Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信