从扩展环境感知到远程水下机器人实时动态建模

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Lei Lei;Yu Zhou;Jianxing Zhang
{"title":"从扩展环境感知到远程水下机器人实时动态建模","authors":"Lei Lei;Yu Zhou;Jianxing Zhang","doi":"10.1109/TRO.2025.3567531","DOIUrl":null,"url":null,"abstract":"Underwater robots are critical observation platforms for diverse ocean environments. However, existing robotic designs often lack long-range and deep-sea observation capabilities and overlook the effects of environmental uncertainties on robotic operations. This article presents a novel long-range underwater robot for extreme ocean environments, featuring a low-power dual-circuit buoyancy adjustment system, an efficient mass-based attitude adjustment system, flying wings, and an open sensor cabin. After that, an extended environment perception strategy with incremental updating is proposed to understand and predict full hydrological dynamics based on sparse observations. On this basis, a real-time dynamic modeling approach integrates multibody dynamics, perceived hydrological dynamics, and environment-robot interactions to provide accurate dynamics predictions and enhance motion efficiency. Extensive simulations and field experiments covering 600 km validated the reliability and autonomy of the robot in long-range ocean observations, highlighting the accuracy of the extended perception and real-time dynamics modeling methods.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3423-3441"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Extended Environment Perception Toward Real-Time Dynamic Modeling for Long-Range Underwater Robot\",\"authors\":\"Lei Lei;Yu Zhou;Jianxing Zhang\",\"doi\":\"10.1109/TRO.2025.3567531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater robots are critical observation platforms for diverse ocean environments. However, existing robotic designs often lack long-range and deep-sea observation capabilities and overlook the effects of environmental uncertainties on robotic operations. This article presents a novel long-range underwater robot for extreme ocean environments, featuring a low-power dual-circuit buoyancy adjustment system, an efficient mass-based attitude adjustment system, flying wings, and an open sensor cabin. After that, an extended environment perception strategy with incremental updating is proposed to understand and predict full hydrological dynamics based on sparse observations. On this basis, a real-time dynamic modeling approach integrates multibody dynamics, perceived hydrological dynamics, and environment-robot interactions to provide accurate dynamics predictions and enhance motion efficiency. Extensive simulations and field experiments covering 600 km validated the reliability and autonomy of the robot in long-range ocean observations, highlighting the accuracy of the extended perception and real-time dynamics modeling methods.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"3423-3441\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10989531/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10989531/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

水下机器人是研究多种海洋环境的重要观测平台。然而,现有的机器人设计往往缺乏远程和深海观测能力,并且忽视了环境不确定性对机器人操作的影响。本文介绍了一种新型的用于极端海洋环境的远程水下机器人,该机器人具有低功耗双回路浮力调节系统、高效的基于质量的姿态调节系统、飞翼和开放式传感器舱。在此基础上,提出了一种增量更新的扩展环境感知策略,以理解和预测基于稀疏观测的水文动态。在此基础上,实时动态建模方法集成了多体动力学、感知水文动力学和环境-机器人相互作用,提供准确的动力学预测,提高运动效率。广泛的模拟和覆盖600公里的现场实验验证了机器人在远程海洋观测中的可靠性和自主性,突出了扩展感知和实时动力学建模方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Extended Environment Perception Toward Real-Time Dynamic Modeling for Long-Range Underwater Robot
Underwater robots are critical observation platforms for diverse ocean environments. However, existing robotic designs often lack long-range and deep-sea observation capabilities and overlook the effects of environmental uncertainties on robotic operations. This article presents a novel long-range underwater robot for extreme ocean environments, featuring a low-power dual-circuit buoyancy adjustment system, an efficient mass-based attitude adjustment system, flying wings, and an open sensor cabin. After that, an extended environment perception strategy with incremental updating is proposed to understand and predict full hydrological dynamics based on sparse observations. On this basis, a real-time dynamic modeling approach integrates multibody dynamics, perceived hydrological dynamics, and environment-robot interactions to provide accurate dynamics predictions and enhance motion efficiency. Extensive simulations and field experiments covering 600 km validated the reliability and autonomy of the robot in long-range ocean observations, highlighting the accuracy of the extended perception and real-time dynamics modeling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信