用电阻抗断层扫描(EIT)驱动的人机交互肌肉骨骼模型来表示人的手臂动态意图

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Enhao Zheng;Xiaodong Liu;Chenfeng Xu;Zhihao Zhou;Qining Wang
{"title":"用电阻抗断层扫描(EIT)驱动的人机交互肌肉骨骼模型来表示人的手臂动态意图","authors":"Enhao Zheng;Xiaodong Liu;Chenfeng Xu;Zhihao Zhou;Qining Wang","doi":"10.1109/TRO.2025.3567547","DOIUrl":null,"url":null,"abstract":"Representing human arm dynamic intent is essential for effective human–robot interaction. Accurately and robustly decoding these intentions through mathematical modeling of neuromuscular processes poses significant challenges. This study introduces an electrical impedance tomography (EIT)-driven musculoskeletal model, which integrates an EIT sensing system with methods for muscle identification, parameter estimation, and musculoskeletal system modeling. Unlike existing muscle-signal techniques, EIT captures muscle activities from the anatomical cross-sectional plane, providing both activation dynamics and morphological features. We validated our method through multiDoF wrist kinematics estimation under varying contraction intensities, arm endpoint stiffness estimation, and robotic variable admittance control. Our approach achieves accuracy comparable to state-of-the-art methods while requiring fewer training samples and a more compact sensing system. The model incorporates physiological constraints, minimizing decoding errors, and ensuring interaction safety. This method enables reliable intent decoding with practical training demands. Future work will enhance the EIT system for complex tasks.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3278-3296"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of Human arm Dynamic Intents With an Electrical Impedance Tomography (EIT)-Driven Musculoskeletal Model for Human–Robot Interaction\",\"authors\":\"Enhao Zheng;Xiaodong Liu;Chenfeng Xu;Zhihao Zhou;Qining Wang\",\"doi\":\"10.1109/TRO.2025.3567547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representing human arm dynamic intent is essential for effective human–robot interaction. Accurately and robustly decoding these intentions through mathematical modeling of neuromuscular processes poses significant challenges. This study introduces an electrical impedance tomography (EIT)-driven musculoskeletal model, which integrates an EIT sensing system with methods for muscle identification, parameter estimation, and musculoskeletal system modeling. Unlike existing muscle-signal techniques, EIT captures muscle activities from the anatomical cross-sectional plane, providing both activation dynamics and morphological features. We validated our method through multiDoF wrist kinematics estimation under varying contraction intensities, arm endpoint stiffness estimation, and robotic variable admittance control. Our approach achieves accuracy comparable to state-of-the-art methods while requiring fewer training samples and a more compact sensing system. The model incorporates physiological constraints, minimizing decoding errors, and ensuring interaction safety. This method enables reliable intent decoding with practical training demands. Future work will enhance the EIT system for complex tasks.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"3278-3296\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10989554/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10989554/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

表达人臂动态意图是实现人机有效交互的关键。通过神经肌肉过程的数学模型准确而稳健地解码这些意图提出了重大挑战。本研究介绍了电阻抗断层扫描(EIT)驱动的肌肉骨骼模型,该模型将电阻抗断层扫描传感系统与肌肉识别、参数估计和肌肉骨骼系统建模方法集成在一起。与现有的肌肉信号技术不同,EIT从解剖横切面捕获肌肉活动,提供激活动力学和形态特征。我们通过不同收缩强度下的多自由度手腕运动学估计、手臂端点刚度估计和机器人可变导纳控制验证了我们的方法。我们的方法达到了与最先进的方法相当的精度,同时需要更少的训练样本和更紧凑的传感系统。该模型结合了生理约束,最大限度地减少解码错误,并确保交互安全。该方法可以实现可靠的意图解码和实际的训练需求。今后的工作将加强复杂任务的企业所得税制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of Human arm Dynamic Intents With an Electrical Impedance Tomography (EIT)-Driven Musculoskeletal Model for Human–Robot Interaction
Representing human arm dynamic intent is essential for effective human–robot interaction. Accurately and robustly decoding these intentions through mathematical modeling of neuromuscular processes poses significant challenges. This study introduces an electrical impedance tomography (EIT)-driven musculoskeletal model, which integrates an EIT sensing system with methods for muscle identification, parameter estimation, and musculoskeletal system modeling. Unlike existing muscle-signal techniques, EIT captures muscle activities from the anatomical cross-sectional plane, providing both activation dynamics and morphological features. We validated our method through multiDoF wrist kinematics estimation under varying contraction intensities, arm endpoint stiffness estimation, and robotic variable admittance control. Our approach achieves accuracy comparable to state-of-the-art methods while requiring fewer training samples and a more compact sensing system. The model incorporates physiological constraints, minimizing decoding errors, and ensuring interaction safety. This method enables reliable intent decoding with practical training demands. Future work will enhance the EIT system for complex tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信