{"title":"细胞外小泡MALDI-TOF MS指纹图谱快速鉴定食管鳞状细胞癌生物标志物","authors":"Xiaodan Dai, Huiying Huang, Fei Liu","doi":"10.1021/acs.analchem.4c06273","DOIUrl":null,"url":null,"abstract":"Esophageal cancer is a major global health challenge, with high incidence and mortality due to the lack of rapid and sensitive diagnostic tools and specific biomarkers. Cancer-cell-derived extracellular vesicles (EVs) carry unique proteins and nucleic acids, making them valuable sources of cancer biomarkers. We report an integrated method that combines an ultrafast exosome isolation system (EXODUS) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect EVs and identify protein biomarkers for diagnosing and monitoring esophageal squamous cell carcinoma (ESCC). EVs derived from 20 mL culture medium supernatant of ESCC cells with varying degrees of differentiation serve as analysis models. We use EXODUS to isolate EVs rapidly. We then analyze the intact EVs using MALDI-TOF MS, which provides cell line-specific EV fingerprints in minutes. These protein fingerprints allow the discrimination of ESCC from normal control cells and enable the classification of ESCC based on the degree of cell differentiation. We explore critical EV biomarker peaks for ESCC diagnosis (5555 <i>m</i>/<i>z</i>, 8603 <i>m</i>/<i>z</i>, etc.) and monitoring (2268 <i>m</i>/<i>z</i>, etc.). Potential EV biomarker candidates, including YBX1, DIRAS2, HIST1H2AH, and MYBBP1A, are identified through tandem mass tag (TMT) proteomics. We tentatively assign the protein identities of EV marker peaks by correlation with the TMT proteomics. Applying this method to plasma-derived EVs shows promise for rapid, minimally invasive diagnosis and monitoring of ESCC.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"39 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Identification of Esophageal Squamous Cell Carcinoma Biomarkers by MALDI-TOF MS Fingerprinting of Extracellular Vesicles\",\"authors\":\"Xiaodan Dai, Huiying Huang, Fei Liu\",\"doi\":\"10.1021/acs.analchem.4c06273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Esophageal cancer is a major global health challenge, with high incidence and mortality due to the lack of rapid and sensitive diagnostic tools and specific biomarkers. Cancer-cell-derived extracellular vesicles (EVs) carry unique proteins and nucleic acids, making them valuable sources of cancer biomarkers. We report an integrated method that combines an ultrafast exosome isolation system (EXODUS) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect EVs and identify protein biomarkers for diagnosing and monitoring esophageal squamous cell carcinoma (ESCC). EVs derived from 20 mL culture medium supernatant of ESCC cells with varying degrees of differentiation serve as analysis models. We use EXODUS to isolate EVs rapidly. We then analyze the intact EVs using MALDI-TOF MS, which provides cell line-specific EV fingerprints in minutes. These protein fingerprints allow the discrimination of ESCC from normal control cells and enable the classification of ESCC based on the degree of cell differentiation. We explore critical EV biomarker peaks for ESCC diagnosis (5555 <i>m</i>/<i>z</i>, 8603 <i>m</i>/<i>z</i>, etc.) and monitoring (2268 <i>m</i>/<i>z</i>, etc.). Potential EV biomarker candidates, including YBX1, DIRAS2, HIST1H2AH, and MYBBP1A, are identified through tandem mass tag (TMT) proteomics. We tentatively assign the protein identities of EV marker peaks by correlation with the TMT proteomics. Applying this method to plasma-derived EVs shows promise for rapid, minimally invasive diagnosis and monitoring of ESCC.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06273\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06273","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Rapid Identification of Esophageal Squamous Cell Carcinoma Biomarkers by MALDI-TOF MS Fingerprinting of Extracellular Vesicles
Esophageal cancer is a major global health challenge, with high incidence and mortality due to the lack of rapid and sensitive diagnostic tools and specific biomarkers. Cancer-cell-derived extracellular vesicles (EVs) carry unique proteins and nucleic acids, making them valuable sources of cancer biomarkers. We report an integrated method that combines an ultrafast exosome isolation system (EXODUS) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect EVs and identify protein biomarkers for diagnosing and monitoring esophageal squamous cell carcinoma (ESCC). EVs derived from 20 mL culture medium supernatant of ESCC cells with varying degrees of differentiation serve as analysis models. We use EXODUS to isolate EVs rapidly. We then analyze the intact EVs using MALDI-TOF MS, which provides cell line-specific EV fingerprints in minutes. These protein fingerprints allow the discrimination of ESCC from normal control cells and enable the classification of ESCC based on the degree of cell differentiation. We explore critical EV biomarker peaks for ESCC diagnosis (5555 m/z, 8603 m/z, etc.) and monitoring (2268 m/z, etc.). Potential EV biomarker candidates, including YBX1, DIRAS2, HIST1H2AH, and MYBBP1A, are identified through tandem mass tag (TMT) proteomics. We tentatively assign the protein identities of EV marker peaks by correlation with the TMT proteomics. Applying this method to plasma-derived EVs shows promise for rapid, minimally invasive diagnosis and monitoring of ESCC.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.