优化等离子体超表面,有效消融癌症和肿瘤细胞

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2025-04-29 DOI:10.1016/j.ijleo.2025.172380
Leila Ghasemzadeh, Karim Abbasian, Sajjad Mortazavi
{"title":"优化等离子体超表面,有效消融癌症和肿瘤细胞","authors":"Leila Ghasemzadeh,&nbsp;Karim Abbasian,&nbsp;Sajjad Mortazavi","doi":"10.1016/j.ijleo.2025.172380","DOIUrl":null,"url":null,"abstract":"<div><div>Photothermal therapy (PTT) offers a promising approach to cancer treatment by elevating tumor tissue temperature, however, it requires efficient light-to-heat conversion at the target site. Qualified nanostructures with optimized absorption for effective PTT remain a key challenge. Then, we propose and numerically investigate plasmonic perfect absorber (PPA) metasurfaces, specifically gold nanodisc arrays (NDAs) and multi-hole arrays (MHAs), designed for enhanced light absorption, which is consistent with cancer cell ablation. Using the Finite-Difference Time-Domain (FDTD) method implemented in Ansys-Lumerical FDTD Solutions, we systematically analyzed the impact of geometric parameters (circular vs. elliptical shapes, varying diameters from 600 nm to 900 nm for NDAs and 400 nm to 800 nm for MHAs, maintaining a 1:2 diameter-to-period ratio) and dielectric spacer materials (SiO₂ and Si) on the reflection and absorption spectra in the near-infrared range. The findings indicate that Au-SiO₂-Au NDA structures with a diameter of 600 nm exhibit significantly reduced reflection (approx. 28 %) and thus high absorption (approx. 72 %) at a resonance wavelength of 3.8 µm. Furthermore, oval NDAs with a small diameter of 600 nm and a SiO₂ spacer layer of 60 nm show superior performance where the absorption cross-section exceeds the scattering cross-section. According to Kirchhoff's law of thermal radiation (A=E), the high absorption efficiency translates to a strong potential for thermal emission, highlighting the suitability of these optimized PPAs as efficient transducers for localized heat generation in photothermal therapy applications.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"332 ","pages":"Article 172380"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized plasmonic metasurface for efficient ablating of cancer and tumor cells\",\"authors\":\"Leila Ghasemzadeh,&nbsp;Karim Abbasian,&nbsp;Sajjad Mortazavi\",\"doi\":\"10.1016/j.ijleo.2025.172380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photothermal therapy (PTT) offers a promising approach to cancer treatment by elevating tumor tissue temperature, however, it requires efficient light-to-heat conversion at the target site. Qualified nanostructures with optimized absorption for effective PTT remain a key challenge. Then, we propose and numerically investigate plasmonic perfect absorber (PPA) metasurfaces, specifically gold nanodisc arrays (NDAs) and multi-hole arrays (MHAs), designed for enhanced light absorption, which is consistent with cancer cell ablation. Using the Finite-Difference Time-Domain (FDTD) method implemented in Ansys-Lumerical FDTD Solutions, we systematically analyzed the impact of geometric parameters (circular vs. elliptical shapes, varying diameters from 600 nm to 900 nm for NDAs and 400 nm to 800 nm for MHAs, maintaining a 1:2 diameter-to-period ratio) and dielectric spacer materials (SiO₂ and Si) on the reflection and absorption spectra in the near-infrared range. The findings indicate that Au-SiO₂-Au NDA structures with a diameter of 600 nm exhibit significantly reduced reflection (approx. 28 %) and thus high absorption (approx. 72 %) at a resonance wavelength of 3.8 µm. Furthermore, oval NDAs with a small diameter of 600 nm and a SiO₂ spacer layer of 60 nm show superior performance where the absorption cross-section exceeds the scattering cross-section. According to Kirchhoff's law of thermal radiation (A=E), the high absorption efficiency translates to a strong potential for thermal emission, highlighting the suitability of these optimized PPAs as efficient transducers for localized heat generation in photothermal therapy applications.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"332 \",\"pages\":\"Article 172380\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402625001688\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402625001688","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

光热疗法(PTT)通过提高肿瘤组织温度为癌症治疗提供了一种很有前途的方法,然而,它需要在目标部位进行有效的光热转换。对于有效的PTT,具有优化吸收的纳米结构仍然是一个关键的挑战。然后,我们提出并数值研究了等离子体完美吸收体(PPA)超表面,特别是金纳米片阵列(NDAs)和多孔阵列(MHAs),旨在增强光吸收,这与癌细胞消融一致。利用Ansys-Lumerical FDTD解决方案中实现的时域有限差分(FDTD)方法,我们系统地分析了几何参数(圆形与椭圆形,NDAs的直径从600 nm变化到900 nm, MHAs的直径从400 nm变化到800 nm,直径与周期比保持1:2)和介电间隔材料(SiO₂和Si)对近红外范围内反射和吸收光谱的影响。研究结果表明,直径为600 nm的Au-SiO 2 -Au NDA结构的反射率显著降低(约为0.05)。28% %),因此吸收率高(约为。72 %),共振波长为3.8 µm。此外,直径为600 nm的椭圆形nda和60 nm的SiO₂间隔层在吸收截面大于散射截面的情况下表现出更优异的性能。根据基尔霍夫热辐射定律(A=E),高吸收效率转化为强大的热辐射潜力,突出了这些优化的ppa作为光热治疗应用中局部产热的高效换能器的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized plasmonic metasurface for efficient ablating of cancer and tumor cells
Photothermal therapy (PTT) offers a promising approach to cancer treatment by elevating tumor tissue temperature, however, it requires efficient light-to-heat conversion at the target site. Qualified nanostructures with optimized absorption for effective PTT remain a key challenge. Then, we propose and numerically investigate plasmonic perfect absorber (PPA) metasurfaces, specifically gold nanodisc arrays (NDAs) and multi-hole arrays (MHAs), designed for enhanced light absorption, which is consistent with cancer cell ablation. Using the Finite-Difference Time-Domain (FDTD) method implemented in Ansys-Lumerical FDTD Solutions, we systematically analyzed the impact of geometric parameters (circular vs. elliptical shapes, varying diameters from 600 nm to 900 nm for NDAs and 400 nm to 800 nm for MHAs, maintaining a 1:2 diameter-to-period ratio) and dielectric spacer materials (SiO₂ and Si) on the reflection and absorption spectra in the near-infrared range. The findings indicate that Au-SiO₂-Au NDA structures with a diameter of 600 nm exhibit significantly reduced reflection (approx. 28 %) and thus high absorption (approx. 72 %) at a resonance wavelength of 3.8 µm. Furthermore, oval NDAs with a small diameter of 600 nm and a SiO₂ spacer layer of 60 nm show superior performance where the absorption cross-section exceeds the scattering cross-section. According to Kirchhoff's law of thermal radiation (A=E), the high absorption efficiency translates to a strong potential for thermal emission, highlighting the suitability of these optimized PPAs as efficient transducers for localized heat generation in photothermal therapy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信