Somayeh Mohammadi, Christian Sandoval-Pauker, Zayra N. Dorado, Thomas P. Senftle, Robert Pankow, Hamidreza Sharifan
{"title":"用于检测饮用水中全氟辛酸的荧光海藻酸钠水凝胶-碳点传感器","authors":"Somayeh Mohammadi, Christian Sandoval-Pauker, Zayra N. Dorado, Thomas P. Senftle, Robert Pankow, Hamidreza Sharifan","doi":"10.1021/acs.analchem.5c01991","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA), are emerging environmental and health concerns due to their persistence, resistance to degradation, and bioaccumulation. In this study, we developed a sensitive and selective detection platform based on a sodium alginate (SA) hydrogel modified with nitrogen and fluorinated carbon dots (N,F-CDs) to enhance the detection of PFOA in natural and engineered water systems. The SA hydrogel–N,F-CD composite exhibited strong fluorescence at 480 nm after optimization, achieving a detection limit as low as 0.001 ppt. The sensor was characterized by using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FT-IR), Powder X-ray Diffraction (PXRD), X-ray Photoelectron Spectroscopy (XPS), and zeta potential spectroscopy, revealing its structural integrity, functional groups, and the surface charge of the SA hydrogel–N,F-CDs network. Sensitivity assessments demonstrated a linear fluorescence response to PFOA concentrations ranging from 1 to 66 ppq. Selectivity tests confirmed the sensor’s ability to distinguish PFOA from other perfluorinated compounds, with minimal interference from other substances. The practical applicability of the sensor was validated using spiked recovery experiments with tap water samples from various locations, achieving recovery rates between 94% and 106.6%. This sensor offers a reliable, efficient, and highly sensitive platform for the detection of PFAS, demonstrating its potential for real-world PFAS-monitoring applications.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"23 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent Sodium Alginate Hydrogel–Carbon Dots Sensor for Detecting Perfluorooctanoic Acid in Potable Water\",\"authors\":\"Somayeh Mohammadi, Christian Sandoval-Pauker, Zayra N. Dorado, Thomas P. Senftle, Robert Pankow, Hamidreza Sharifan\",\"doi\":\"10.1021/acs.analchem.5c01991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per- and polyfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA), are emerging environmental and health concerns due to their persistence, resistance to degradation, and bioaccumulation. In this study, we developed a sensitive and selective detection platform based on a sodium alginate (SA) hydrogel modified with nitrogen and fluorinated carbon dots (N,F-CDs) to enhance the detection of PFOA in natural and engineered water systems. The SA hydrogel–N,F-CD composite exhibited strong fluorescence at 480 nm after optimization, achieving a detection limit as low as 0.001 ppt. The sensor was characterized by using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FT-IR), Powder X-ray Diffraction (PXRD), X-ray Photoelectron Spectroscopy (XPS), and zeta potential spectroscopy, revealing its structural integrity, functional groups, and the surface charge of the SA hydrogel–N,F-CDs network. Sensitivity assessments demonstrated a linear fluorescence response to PFOA concentrations ranging from 1 to 66 ppq. Selectivity tests confirmed the sensor’s ability to distinguish PFOA from other perfluorinated compounds, with minimal interference from other substances. The practical applicability of the sensor was validated using spiked recovery experiments with tap water samples from various locations, achieving recovery rates between 94% and 106.6%. This sensor offers a reliable, efficient, and highly sensitive platform for the detection of PFAS, demonstrating its potential for real-world PFAS-monitoring applications.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c01991\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01991","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Fluorescent Sodium Alginate Hydrogel–Carbon Dots Sensor for Detecting Perfluorooctanoic Acid in Potable Water
Per- and polyfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA), are emerging environmental and health concerns due to their persistence, resistance to degradation, and bioaccumulation. In this study, we developed a sensitive and selective detection platform based on a sodium alginate (SA) hydrogel modified with nitrogen and fluorinated carbon dots (N,F-CDs) to enhance the detection of PFOA in natural and engineered water systems. The SA hydrogel–N,F-CD composite exhibited strong fluorescence at 480 nm after optimization, achieving a detection limit as low as 0.001 ppt. The sensor was characterized by using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FT-IR), Powder X-ray Diffraction (PXRD), X-ray Photoelectron Spectroscopy (XPS), and zeta potential spectroscopy, revealing its structural integrity, functional groups, and the surface charge of the SA hydrogel–N,F-CDs network. Sensitivity assessments demonstrated a linear fluorescence response to PFOA concentrations ranging from 1 to 66 ppq. Selectivity tests confirmed the sensor’s ability to distinguish PFOA from other perfluorinated compounds, with minimal interference from other substances. The practical applicability of the sensor was validated using spiked recovery experiments with tap water samples from various locations, achieving recovery rates between 94% and 106.6%. This sensor offers a reliable, efficient, and highly sensitive platform for the detection of PFAS, demonstrating its potential for real-world PFAS-monitoring applications.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.