{"title":"强啡通过去抑制回路机制起作用","authors":"Jake Rogers","doi":"10.1038/s41583-025-00927-0","DOIUrl":null,"url":null,"abstract":"Dynorphin regulates motivated behaviour in mice via κ-opioid receptor signalling in a nucleus accumbens–ventral pallidum (VP) disinhibitory circuit that increases activity of VP cholinergic neurons projecting to the basolateral amygdala.","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"7 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynorphin acts via a disinhibitory circuit mechanism\",\"authors\":\"Jake Rogers\",\"doi\":\"10.1038/s41583-025-00927-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynorphin regulates motivated behaviour in mice via κ-opioid receptor signalling in a nucleus accumbens–ventral pallidum (VP) disinhibitory circuit that increases activity of VP cholinergic neurons projecting to the basolateral amygdala.\",\"PeriodicalId\":19082,\"journal\":{\"name\":\"Nature Reviews Neuroscience\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":34.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41583-025-00927-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00927-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
Dynorphin acts via a disinhibitory circuit mechanism
Dynorphin regulates motivated behaviour in mice via κ-opioid receptor signalling in a nucleus accumbens–ventral pallidum (VP) disinhibitory circuit that increases activity of VP cholinergic neurons projecting to the basolateral amygdala.
期刊介绍:
Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.