Soroush Mahjoubi, Rojyar Barhemat, Weina Meng, Yi Bao
{"title":"人工智能辅助低碳低成本混凝土碳中和设计综述","authors":"Soroush Mahjoubi, Rojyar Barhemat, Weina Meng, Yi Bao","doi":"10.1007/s10462-025-11182-1","DOIUrl":null,"url":null,"abstract":"<div><p>Decarbonizing concrete production is a critical step toward achieving carbon neutrality by 2050. This paper highlights the advancements in artificial intelligence-assisted design of low-carbon cost-effective concrete, focusing on integrating machine learning-based property prediction with multi-objective optimization. Data collection and processing techniques, such as automatic data extraction, artificial data generation, and anomaly detection, are first discussed to address the importance of dataset quality. Strategies that capture physicochemical information of ingredients, including by-product supplementary cementitious materials and recycled aggregates, are then examined to enhance model generalizability. Various machine learning models—from individual regression approaches to heterogeneous ensemble methods—are compared for their predictive accuracy and robustness. Methods for hyperparameter tuning, model evaluation, and interpretation to ensure reliable and interpretable predictions are reviewed. Design optimization approaches are then highlighted, ranging from grid/random searches to more sophisticated gradient-based and metaheuristic algorithms, aimed at minimizing carbon footprint, embodied energy, and cost. Future research avenues encompass (1) application-specific design frameworks that integrate critical objectives—mechanical performance, durability, fresh-state behavior, and time-dependent properties such as creep and shrinkage—tailored to specific structural and environmental requirements; (2) holistic design optimization that simultaneously refines mixture design and structural parameters; and (3) probabilistic approaches to systematically manage uncertainties in materials, structural performance, and loading conditions systematically.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11182-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Review of AI-assisted design of low-carbon cost-effective concrete toward carbon neutrality\",\"authors\":\"Soroush Mahjoubi, Rojyar Barhemat, Weina Meng, Yi Bao\",\"doi\":\"10.1007/s10462-025-11182-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decarbonizing concrete production is a critical step toward achieving carbon neutrality by 2050. This paper highlights the advancements in artificial intelligence-assisted design of low-carbon cost-effective concrete, focusing on integrating machine learning-based property prediction with multi-objective optimization. Data collection and processing techniques, such as automatic data extraction, artificial data generation, and anomaly detection, are first discussed to address the importance of dataset quality. Strategies that capture physicochemical information of ingredients, including by-product supplementary cementitious materials and recycled aggregates, are then examined to enhance model generalizability. Various machine learning models—from individual regression approaches to heterogeneous ensemble methods—are compared for their predictive accuracy and robustness. Methods for hyperparameter tuning, model evaluation, and interpretation to ensure reliable and interpretable predictions are reviewed. Design optimization approaches are then highlighted, ranging from grid/random searches to more sophisticated gradient-based and metaheuristic algorithms, aimed at minimizing carbon footprint, embodied energy, and cost. Future research avenues encompass (1) application-specific design frameworks that integrate critical objectives—mechanical performance, durability, fresh-state behavior, and time-dependent properties such as creep and shrinkage—tailored to specific structural and environmental requirements; (2) holistic design optimization that simultaneously refines mixture design and structural parameters; and (3) probabilistic approaches to systematically manage uncertainties in materials, structural performance, and loading conditions systematically.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 8\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11182-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11182-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11182-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Review of AI-assisted design of low-carbon cost-effective concrete toward carbon neutrality
Decarbonizing concrete production is a critical step toward achieving carbon neutrality by 2050. This paper highlights the advancements in artificial intelligence-assisted design of low-carbon cost-effective concrete, focusing on integrating machine learning-based property prediction with multi-objective optimization. Data collection and processing techniques, such as automatic data extraction, artificial data generation, and anomaly detection, are first discussed to address the importance of dataset quality. Strategies that capture physicochemical information of ingredients, including by-product supplementary cementitious materials and recycled aggregates, are then examined to enhance model generalizability. Various machine learning models—from individual regression approaches to heterogeneous ensemble methods—are compared for their predictive accuracy and robustness. Methods for hyperparameter tuning, model evaluation, and interpretation to ensure reliable and interpretable predictions are reviewed. Design optimization approaches are then highlighted, ranging from grid/random searches to more sophisticated gradient-based and metaheuristic algorithms, aimed at minimizing carbon footprint, embodied energy, and cost. Future research avenues encompass (1) application-specific design frameworks that integrate critical objectives—mechanical performance, durability, fresh-state behavior, and time-dependent properties such as creep and shrinkage—tailored to specific structural and environmental requirements; (2) holistic design optimization that simultaneously refines mixture design and structural parameters; and (3) probabilistic approaches to systematically manage uncertainties in materials, structural performance, and loading conditions systematically.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.