{"title":"小麦淀粉与山楂籽多糖的相互作用及其对淀粉特性和体外消化率的影响","authors":"Qianhui Yu, Tuoping Li, Suhong Li","doi":"10.1016/j.foodchem.2025.144610","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the impact of alkaline extracted hawthorn seed polysaccharides (AHSP) on the properties and in vitro digestibility of wheat starch (WS) under <em>co</em>-heating and non-co-heating conditions. AHSP dose-dependently inhibited the hydrolysis of WS, with the 5 % AHSP co-heating treatment significantly reducing the degree of hydrolysis by 42.33 %. Correspondingly, the resistant starch (RS) content was increased with the increasing dose of AHSP, which demonstrated the effectiveness of co-heating interactions in reducing WS digestibility. The binding style was that AHSP bound to the linear chains of WS via physical forces, achieving a complexation index of 48 % (at 5 % AHSP), which inhibited the solubilization and facilitated the aggregation of WS. Additionally, the strong associative network between WS and AHSP increased apparent viscosity and enhanced the short-range ordered and crystalline structures of WS. These results provided a foundation for applying AHSP in developing starchy foods with low glycemic index (GI).</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"485 ","pages":"Article 144610"},"PeriodicalIF":8.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction between wheat starch and hawthorn seed polysaccharide and its influence on starch properties and in vitro digestibility\",\"authors\":\"Qianhui Yu, Tuoping Li, Suhong Li\",\"doi\":\"10.1016/j.foodchem.2025.144610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the impact of alkaline extracted hawthorn seed polysaccharides (AHSP) on the properties and in vitro digestibility of wheat starch (WS) under <em>co</em>-heating and non-co-heating conditions. AHSP dose-dependently inhibited the hydrolysis of WS, with the 5 % AHSP co-heating treatment significantly reducing the degree of hydrolysis by 42.33 %. Correspondingly, the resistant starch (RS) content was increased with the increasing dose of AHSP, which demonstrated the effectiveness of co-heating interactions in reducing WS digestibility. The binding style was that AHSP bound to the linear chains of WS via physical forces, achieving a complexation index of 48 % (at 5 % AHSP), which inhibited the solubilization and facilitated the aggregation of WS. Additionally, the strong associative network between WS and AHSP increased apparent viscosity and enhanced the short-range ordered and crystalline structures of WS. These results provided a foundation for applying AHSP in developing starchy foods with low glycemic index (GI).</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"485 \",\"pages\":\"Article 144610\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625018618\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625018618","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Interaction between wheat starch and hawthorn seed polysaccharide and its influence on starch properties and in vitro digestibility
This study investigated the impact of alkaline extracted hawthorn seed polysaccharides (AHSP) on the properties and in vitro digestibility of wheat starch (WS) under co-heating and non-co-heating conditions. AHSP dose-dependently inhibited the hydrolysis of WS, with the 5 % AHSP co-heating treatment significantly reducing the degree of hydrolysis by 42.33 %. Correspondingly, the resistant starch (RS) content was increased with the increasing dose of AHSP, which demonstrated the effectiveness of co-heating interactions in reducing WS digestibility. The binding style was that AHSP bound to the linear chains of WS via physical forces, achieving a complexation index of 48 % (at 5 % AHSP), which inhibited the solubilization and facilitated the aggregation of WS. Additionally, the strong associative network between WS and AHSP increased apparent viscosity and enhanced the short-range ordered and crystalline structures of WS. These results provided a foundation for applying AHSP in developing starchy foods with low glycemic index (GI).
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.