{"title":"1,8 -桉树脑通过调节TRP-KYN和精氨酸- no重编程改善金黄色葡萄球菌诱导的肺炎","authors":"Qianwen Cao, Luyao Liu, Xiaoge Ma, Chaomin Zhong, Mengqi Tang, Mengge Liu, Ling-Bo Qu, Bo Wei, Xia Xu","doi":"10.1021/acs.jafc.4c10860","DOIUrl":null,"url":null,"abstract":"1, 8-Cineole (Cin), a cyclic monoterpenoid derived from tea trees and eucalyptus species, exhibits diverse pharmacological properties. Yet, its therapeutic impact and underlying mechanism against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) pneumonia remain to be elucidated. In this study, metabolomics based on UPLC-MS/MS was integrated with network pharmacology, molecular biology, and molecular docking to investigate the effects of Cin. The findings demonstrated that Cin markedly reduced mortality and lung bacterial load, lessened pulmonary damage while suppressing the levels of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of infected mice. Additionally, 19 metabolites, primarily involved in tryptophan metabolism and arginine biosynthesis, were notably modified by Cin via suppressing the enzymatic activity of indoleamine 2, 3-dioxygenase 1 (IDO1) and inducible nitric oxide synthase (iNOS), thereby attenuating the inflammatory response. Notably, knockdown of IDO1 or iNOS significantly diminished the anti-inflammation effect of Cin. In conclusion, our study validates the therapeutic potential of Cin against <i>S. aureus</i> pneumonia via anti-inflammation by downregulating IDO1 and iNOS. Our results provide a theoretical basis of natural substances applied in bacterial pneumonia treatment.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"43 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1, 8-Cineole Ameliorated Staphylococcus aureus-Induced Pneumonia through Modulation of TRP-KYN and Arginine-NO Reprogramming\",\"authors\":\"Qianwen Cao, Luyao Liu, Xiaoge Ma, Chaomin Zhong, Mengqi Tang, Mengge Liu, Ling-Bo Qu, Bo Wei, Xia Xu\",\"doi\":\"10.1021/acs.jafc.4c10860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1, 8-Cineole (Cin), a cyclic monoterpenoid derived from tea trees and eucalyptus species, exhibits diverse pharmacological properties. Yet, its therapeutic impact and underlying mechanism against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) pneumonia remain to be elucidated. In this study, metabolomics based on UPLC-MS/MS was integrated with network pharmacology, molecular biology, and molecular docking to investigate the effects of Cin. The findings demonstrated that Cin markedly reduced mortality and lung bacterial load, lessened pulmonary damage while suppressing the levels of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of infected mice. Additionally, 19 metabolites, primarily involved in tryptophan metabolism and arginine biosynthesis, were notably modified by Cin via suppressing the enzymatic activity of indoleamine 2, 3-dioxygenase 1 (IDO1) and inducible nitric oxide synthase (iNOS), thereby attenuating the inflammatory response. Notably, knockdown of IDO1 or iNOS significantly diminished the anti-inflammation effect of Cin. In conclusion, our study validates the therapeutic potential of Cin against <i>S. aureus</i> pneumonia via anti-inflammation by downregulating IDO1 and iNOS. Our results provide a theoretical basis of natural substances applied in bacterial pneumonia treatment.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c10860\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10860","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
1, 8-Cineole Ameliorated Staphylococcus aureus-Induced Pneumonia through Modulation of TRP-KYN and Arginine-NO Reprogramming
1, 8-Cineole (Cin), a cyclic monoterpenoid derived from tea trees and eucalyptus species, exhibits diverse pharmacological properties. Yet, its therapeutic impact and underlying mechanism against Staphylococcus aureus (S. aureus) pneumonia remain to be elucidated. In this study, metabolomics based on UPLC-MS/MS was integrated with network pharmacology, molecular biology, and molecular docking to investigate the effects of Cin. The findings demonstrated that Cin markedly reduced mortality and lung bacterial load, lessened pulmonary damage while suppressing the levels of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of infected mice. Additionally, 19 metabolites, primarily involved in tryptophan metabolism and arginine biosynthesis, were notably modified by Cin via suppressing the enzymatic activity of indoleamine 2, 3-dioxygenase 1 (IDO1) and inducible nitric oxide synthase (iNOS), thereby attenuating the inflammatory response. Notably, knockdown of IDO1 or iNOS significantly diminished the anti-inflammation effect of Cin. In conclusion, our study validates the therapeutic potential of Cin against S. aureus pneumonia via anti-inflammation by downregulating IDO1 and iNOS. Our results provide a theoretical basis of natural substances applied in bacterial pneumonia treatment.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.