Alison Johnston, Amanda D. Rodewald, Matt Strimas-Mackey, Tom Auer, Wesley M. Hochachka, Andrew N. Stillman, Courtney L. Davis, Viviana Ruiz-Gutierrez, Adriaan M. Dokter, Eliot T. Miller, Orin Robinson, Shawn Ligocki, Lauren Oldham Jaromczyk, Cynthia Crowley, Christopher L. Wood, Daniel Fink
{"title":"在物种最丰富的北美地区,鸟类数量减少最多","authors":"Alison Johnston, Amanda D. Rodewald, Matt Strimas-Mackey, Tom Auer, Wesley M. Hochachka, Andrew N. Stillman, Courtney L. Davis, Viviana Ruiz-Gutierrez, Adriaan M. Dokter, Eliot T. Miller, Orin Robinson, Shawn Ligocki, Lauren Oldham Jaromczyk, Cynthia Crowley, Christopher L. Wood, Daniel Fink","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Efforts to address declines of North American birds have been constrained by limited availability of fine-scale information about population change. By using participatory science data from eBird, we estimated continental population change and relative abundance at 27-kilometer resolution for 495 bird species from 2007 to 2021. Results revealed high and previously undetected spatial heterogeneity in trends; although 75% of species were declining, 97% of species showed separate areas of significantly increasing and decreasing populations. Populations tended to decline most steeply in strongholds where species were most abundant, yet they fared better where species were least abundant. These high-resolution trends improve our ability to understand population dynamics, prioritize recovery efforts, and guide conservation at a time when action is urgently needed.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6746","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"North American bird declines are greatest where species are most abundant\",\"authors\":\"Alison Johnston, Amanda D. Rodewald, Matt Strimas-Mackey, Tom Auer, Wesley M. Hochachka, Andrew N. Stillman, Courtney L. Davis, Viviana Ruiz-Gutierrez, Adriaan M. Dokter, Eliot T. Miller, Orin Robinson, Shawn Ligocki, Lauren Oldham Jaromczyk, Cynthia Crowley, Christopher L. Wood, Daniel Fink\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Efforts to address declines of North American birds have been constrained by limited availability of fine-scale information about population change. By using participatory science data from eBird, we estimated continental population change and relative abundance at 27-kilometer resolution for 495 bird species from 2007 to 2021. Results revealed high and previously undetected spatial heterogeneity in trends; although 75% of species were declining, 97% of species showed separate areas of significantly increasing and decreasing populations. Populations tended to decline most steeply in strongholds where species were most abundant, yet they fared better where species were least abundant. These high-resolution trends improve our ability to understand population dynamics, prioritize recovery efforts, and guide conservation at a time when action is urgently needed.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"388 6746\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adn4381\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adn4381","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
North American bird declines are greatest where species are most abundant
Efforts to address declines of North American birds have been constrained by limited availability of fine-scale information about population change. By using participatory science data from eBird, we estimated continental population change and relative abundance at 27-kilometer resolution for 495 bird species from 2007 to 2021. Results revealed high and previously undetected spatial heterogeneity in trends; although 75% of species were declining, 97% of species showed separate areas of significantly increasing and decreasing populations. Populations tended to decline most steeply in strongholds where species were most abundant, yet they fared better where species were least abundant. These high-resolution trends improve our ability to understand population dynamics, prioritize recovery efforts, and guide conservation at a time when action is urgently needed.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.