{"title":"干细胞作为重编程和修复的榜样","authors":"Magdalena Götz, Maria-Elena Torres-Padilla","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Stem cells are a promising source for cellular therapies across many diseases and tissues. Their inherent ability to differentiate into other cell types has been the focus of investigation over decades. This ability is currently being exploited for therapies using strategies to repair or replace damaged tissues and cells or to alleviate immune rejection. Exploring stem cell function has enabled direct reprogramming approaches, for example, through the production of induced pluripotent stem cells and the generation of tissue-specific stem cells. Understanding stem cell function has emerged as an important strategy for repopulating stem cell pools or generating differentiated cells for therapy. Here, we review general principles of mammalian stem cell biology and cellular reprogramming approaches and their use for current and future therapeutic purposes.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6746","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem cells as role models for reprogramming and repair\",\"authors\":\"Magdalena Götz, Maria-Elena Torres-Padilla\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Stem cells are a promising source for cellular therapies across many diseases and tissues. Their inherent ability to differentiate into other cell types has been the focus of investigation over decades. This ability is currently being exploited for therapies using strategies to repair or replace damaged tissues and cells or to alleviate immune rejection. Exploring stem cell function has enabled direct reprogramming approaches, for example, through the production of induced pluripotent stem cells and the generation of tissue-specific stem cells. Understanding stem cell function has emerged as an important strategy for repopulating stem cell pools or generating differentiated cells for therapy. Here, we review general principles of mammalian stem cell biology and cellular reprogramming approaches and their use for current and future therapeutic purposes.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"388 6746\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adp2959\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adp2959","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Stem cells as role models for reprogramming and repair
Stem cells are a promising source for cellular therapies across many diseases and tissues. Their inherent ability to differentiate into other cell types has been the focus of investigation over decades. This ability is currently being exploited for therapies using strategies to repair or replace damaged tissues and cells or to alleviate immune rejection. Exploring stem cell function has enabled direct reprogramming approaches, for example, through the production of induced pluripotent stem cells and the generation of tissue-specific stem cells. Understanding stem cell function has emerged as an important strategy for repopulating stem cell pools or generating differentiated cells for therapy. Here, we review general principles of mammalian stem cell biology and cellular reprogramming approaches and their use for current and future therapeutic purposes.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.