重费米子金属UPt3在压力下的结构相变、力学和热力学

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Quan, Li Li, Jiang-Jiang Ma, Wei-Dong Li and Bao-Tian Wang
{"title":"重费米子金属UPt3在压力下的结构相变、力学和热力学","authors":"Hao Quan, Li Li, Jiang-Jiang Ma, Wei-Dong Li and Bao-Tian Wang","doi":"10.1039/D5TC00379B","DOIUrl":null,"url":null,"abstract":"<p >Crystal structures, electronic structures, mechanics, and thermodynamics of the heavy fermion superconductor UPt<small><sub>3</sub></small> under a pressure of up to 300 GPa have been investigated by a particle swarm optimization structure prediction method together with detailed first-principles calculations. A pressure-induced structural phase transition (<em>P</em><small><sub>T</sub></small>) is predicted at 155.9 GPa, where the hexagonal crystal structure with the space group <em>P</em>6<small><sub>3</sub></small>/<em>mmc</em> transforms into an orthorhombic structure with the space group <em>Cmmm</em>. The molar volume of UPt<small><sub>3</sub></small> drops about 2.52% at 155.9 GPa, while the distance between the first-nearest neighbor of U atoms (<em>d</em><small><sub>U–U</sub></small>) decreases, implying a switch from the heavy electronic states to the weakly correlated electronic states. The metal nature is well retained upon the phase transition and upon further compression to 300 GPa. Phonon dispersions and elastic constants are used to confirm the dynamical and mechanical stability of both phases under different pressures. The bulk modulus <em>B</em>, shear modulus <em>G</em>, and Young's modulus <em>E</em> of the <em>Cmmm</em> are all higher than those of the <em>P</em>6<small><sub>3</sub></small>/<em>mmc</em>, indicating enhanced mechanical properties of the <em>Cmmm</em> phase at the same pressure. The highest phonon vibration frequency increases with pressure, suggesting strengthened atom–atom interactions. Thermodynamic properties, evaluated using the quasi-harmonic approximation (QHA), reveal that the <em>P</em>6<small><sub>3</sub></small>/<em>mmc</em> phase remains stable in the 0–155.9 GPa range, while the <em>Cmmm</em> phase emerges under higher pressures. Our results provide theoretical insights into the pressure-driven phase transition of UPt<small><sub>3</sub></small> and provide its detailed electronic, phononic, mechanical, and thermodynamic properties under external pressure.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 17","pages":" 8723-8733"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural phase transition, mechanics, and thermodynamics of heavy fermion metal UPt3 under pressure†\",\"authors\":\"Hao Quan, Li Li, Jiang-Jiang Ma, Wei-Dong Li and Bao-Tian Wang\",\"doi\":\"10.1039/D5TC00379B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystal structures, electronic structures, mechanics, and thermodynamics of the heavy fermion superconductor UPt<small><sub>3</sub></small> under a pressure of up to 300 GPa have been investigated by a particle swarm optimization structure prediction method together with detailed first-principles calculations. A pressure-induced structural phase transition (<em>P</em><small><sub>T</sub></small>) is predicted at 155.9 GPa, where the hexagonal crystal structure with the space group <em>P</em>6<small><sub>3</sub></small>/<em>mmc</em> transforms into an orthorhombic structure with the space group <em>Cmmm</em>. The molar volume of UPt<small><sub>3</sub></small> drops about 2.52% at 155.9 GPa, while the distance between the first-nearest neighbor of U atoms (<em>d</em><small><sub>U–U</sub></small>) decreases, implying a switch from the heavy electronic states to the weakly correlated electronic states. The metal nature is well retained upon the phase transition and upon further compression to 300 GPa. Phonon dispersions and elastic constants are used to confirm the dynamical and mechanical stability of both phases under different pressures. The bulk modulus <em>B</em>, shear modulus <em>G</em>, and Young's modulus <em>E</em> of the <em>Cmmm</em> are all higher than those of the <em>P</em>6<small><sub>3</sub></small>/<em>mmc</em>, indicating enhanced mechanical properties of the <em>Cmmm</em> phase at the same pressure. The highest phonon vibration frequency increases with pressure, suggesting strengthened atom–atom interactions. Thermodynamic properties, evaluated using the quasi-harmonic approximation (QHA), reveal that the <em>P</em>6<small><sub>3</sub></small>/<em>mmc</em> phase remains stable in the 0–155.9 GPa range, while the <em>Cmmm</em> phase emerges under higher pressures. Our results provide theoretical insights into the pressure-driven phase transition of UPt<small><sub>3</sub></small> and provide its detailed electronic, phononic, mechanical, and thermodynamic properties under external pressure.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 17\",\"pages\":\" 8723-8733\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00379b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00379b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用粒子群优化结构预测方法和详细的第一性原理计算,研究了重费米子超导体UPt3在高达300 GPa压力下的晶体结构、电子结构、力学和热力学。在155.9 GPa时,由空间群为P63/mmc的六方晶体结构转变为空间群为Cmmm的正交晶型结构。在155.9 GPa时,UPt3的摩尔体积下降了2.52%,U原子之间的距离减小,从重电子态转变为弱相关电子态。在相变和进一步压缩至300 GPa时,金属性质仍保持良好。利用声子色散和弹性常数确定了两相在不同压力下的动力学和力学稳定性。Cmmm相的体积模量B、剪切模量G和杨氏模量E均高于P63/mmc相,表明在相同压力下Cmmm相的力学性能得到增强。声子的最高振动频率随压力的增加而增加,表明原子与原子之间的相互作用增强。利用准谐波近似(QHA)评估热力学性质,发现P63/mmc相在0-155.9 GPa范围内保持稳定,而Cmmm相在更高的压力下出现。我们的研究结果为UPt3的压力驱动相变提供了理论见解,并提供了其在外部压力下的详细电子、声子、力学和热力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural phase transition, mechanics, and thermodynamics of heavy fermion metal UPt3 under pressure†

Structural phase transition, mechanics, and thermodynamics of heavy fermion metal UPt3 under pressure†

Crystal structures, electronic structures, mechanics, and thermodynamics of the heavy fermion superconductor UPt3 under a pressure of up to 300 GPa have been investigated by a particle swarm optimization structure prediction method together with detailed first-principles calculations. A pressure-induced structural phase transition (PT) is predicted at 155.9 GPa, where the hexagonal crystal structure with the space group P63/mmc transforms into an orthorhombic structure with the space group Cmmm. The molar volume of UPt3 drops about 2.52% at 155.9 GPa, while the distance between the first-nearest neighbor of U atoms (dU–U) decreases, implying a switch from the heavy electronic states to the weakly correlated electronic states. The metal nature is well retained upon the phase transition and upon further compression to 300 GPa. Phonon dispersions and elastic constants are used to confirm the dynamical and mechanical stability of both phases under different pressures. The bulk modulus B, shear modulus G, and Young's modulus E of the Cmmm are all higher than those of the P63/mmc, indicating enhanced mechanical properties of the Cmmm phase at the same pressure. The highest phonon vibration frequency increases with pressure, suggesting strengthened atom–atom interactions. Thermodynamic properties, evaluated using the quasi-harmonic approximation (QHA), reveal that the P63/mmc phase remains stable in the 0–155.9 GPa range, while the Cmmm phase emerges under higher pressures. Our results provide theoretical insights into the pressure-driven phase transition of UPt3 and provide its detailed electronic, phononic, mechanical, and thermodynamic properties under external pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信